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METHODS FOR REGRESSION ANALYSIS OF
STRONG-MOTION DATA

By WiLLiaM B. JOYNER AND DAVID M. BOORE

ABSTRACT

We introduce a new computational method for implementing Brillinger and
Preisler's (1984, 1985) one-stage maximum-likelihood analysis of strong-
motion data. We also reexamine two-stage methods and agree with Masuda
and Ohtake (1992) that rigorous analysis requires off-diagonal terms in the
weighting matrix for the second-stage regression but note that Masuda and
Ohtake failed to account for the earthquake-to-earthquake component of vari-
ance. Analysis by Monte Carlo methods shows that both one-stage and
two-stage methods, properly applied, are unbiased and that they have compa-
rable uncertainties. Both give the same correct results when applied to the
data that Fukushima and Tanaka (1990) have shown cannot be satisfactorily
analyzed by ordinary least squares. The two-stage method is more efficient
computationally, but for typical problems neither method requires enough time
to make efficiency important. Of the two methods, only the two-stage method
can readily be used with the techniques described by Toro (1981) and
McLaughlin (1991) for overcoming the bias due to instruments that do not
trigger.

INTRODUCTION

Empirical equations for predicting strong ground motion are typically fit to
the strong-motion data set by the method of ordinary least squares. Campbell
(1981, 1989) used weighted least squares in an attempt to compensate for the
nonuniform distribution of data with respect to distance. We introduced a
two-stage regression method designed to decouple the determination of the
magnitude dependence from the determination of the distance dependence
(Joyner and Boore, 1981). In the first stage, the distance dependence was
determined along with a set of amplitude factors, one for each earthquake. In
the second stage, the amplitude factors were regressed against magnitude to
determine the magnitude dependence. Fukushima and Tanaka (1990) used a
similar two-stage method on the Japanese peak horizontal acceleration data set
and compared results with those from one-stage ordinary least squares. They
showed that the one-stage ordinary least-squares results were seriously in
error. They attributed the error to the strong correlation between magnitude
and distance and the resulting trade-off between magnitude dependence and
distance dependence. The correct distance dependence, given by the two-stage
method and verified by analyzing individual earthquakes separately, showed a
much stronger decay of peak acceleration with distance than the one-stage
ordinary least-squares method, which had been used previously.

In our original use of the two-stage method (Joyner and Boore, 1981, 1982),
we included in the second-stage regression for peak acceleration only those
earthquakes that had been recorded at more than one station, and we gave
equal weight to each earthquake included. For peak velocity and response
spectra, there were so few earthquakes in the data set that we were compelled
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to use them all, and we gave each equal weight. Later we proposed a diagonal
weighting scheme to be used in the second-stage regression (Joyner and Boore,
1988). Fukushima and Tanaka’s (1990) procedure for the second-stage regres-
sion had the effect of weighting each earthquake by the number of recordings.
Masuda and Ohtake (1992) proposed a weighting matrix for the second-stage
regression different from any used earlier. They showed that off-diagonal terms
need to be included in the weighting matrix, because the amplitude factors that
are the dependent variables in the second-stage regression are mutually corre-
lated as a consequence of the fact that they were determined in the first-stage
regression along with the parameters that control the distance dependence. As
Fukushima and Tanaka (1992) point out, however, the off-diagonal terms are
small in magnitude.

Brillinger and Preisler (1984, 1985) introduced what they called the random-
effects model, which incorporated an explicit earthquake-to-earthquake compo-
nent of variance in addition to the record-to-record component. They described
one-stage maximum-likelihood methods for evaluating the parameters in the
prediction equation. Abrahamson and Youngs (1992) introduced an alternative
algorithm, which they considered more stable though less efficient.

The concept of an earthquake-to-earthquake component of variance is implicit
in the two-stage regression methods. The two-stage methods are not, however,
exactly equivalent to the one-stage maximume-likelihood methods, and the rela-
tionship of one to the other is not obvious. Both the one-stage and two-stage
methods are based on maximum likelihood. In the one-stage methods, the
parameters are all determined simultaneously by maximizing the likelihood of
the set of observations. In the two-stage methods, the parameters controlling
distance dependence and a set of amplitude factors, one for each earthquake,
are determined in the first stage, by maximizing the likelihood of the set of
observations. The parameters controlling magnitude dependence are then deter-
mined in the second stage by maximizing the likelihood of the set of amplitude
factors. On the face of it, one might expect either method to give satisfactory
results. The one-stage method may be more elegant mathematically, but the
two-stage method is conceptually simpler. The two-stage method can be consid-
ered the analytical equivalent of the graphical method employed by Richter
(1935, 1958) in developing the attenuation curve that forms the basis for the
local magnitude scale in southern California. As we will show, the two-stage
method is more efficient computationally, but the one-stage method requires so
little computer time that efficiency is not really an issue.

In view of the number of different approaches that have been proposed, we
believe it timely to attempt to sort out how these approaches relate to each
other. We begin by developing our own computational method for one-stage
maximum-likelihood analysis, which makes use of the conventional mathemat-
ics of regression analysis. We then reexamine two-stage methods and derive the
correct weighting for the second stage. Finally, we examine estimation errors
and compare the one-stage method with the two-stage method by Monte Carlo
simulations. To illustrate the discussion, we use our original peak horizontal
acceleration data set (Joyner and Boore, 1981), which differs slightly from the
data set used later (Joyner and Boore, 1982, 1988). This choice facilitates
comparison with Brillinger and Preisler (1984, 1985), who used our original
data set, which includes 182 records from 23 earthquakes.
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ONE-STAGE MAXIMUM-LIKELIHOOD METHODS

We use the formulation of Brillinger and Preisler (1984, 1985) and fit the data
by the equation

log A, = a + b(M, — 6) — log(d,? + h?)"*

te(d2+ 1) e te, (1)

where A, is peak horizontal acceleration for the nth record; M, is the moment
magnitude (Hanks and Kanamori, 1979) of the earthquake corresponding to the
nth record; d, is the shortest distance from the recording site of the nth record
to the vertical projection of the earthquake fault rupture on the surface of the
Earth; €, is an independent random variable that takes on a specific value for
each record; €, is an independent random variable that takes on a specific value
for each earthquake; and a, b, A, and ¢ are parameters to be determined. The
records are numbered so that all records from the same earthquake are consecu-
tive. For all numerical results, the units of acceleration and distance are g and
km, respectively. The mean of €, over the population of earthquakes is zero, and
the variance is %23 €, represents the earthquake-to-earthquake component of
variability. The mean of ¢, over the population of records is zero, and the
variance is cr,z; €, represents the site-to-site component of variability plus all
other sources of variability not represented by e,.

Strictly speaking, the site-to-site component of variability should be separated
out in the same way as the earthquake-to-earthquake component. ¢, should be
considered the sum of two variables: €., an independent random variable that
takes on a specific value for each site, and ¢,, an independent random variable
that takes on a specific value for each record. Because there are few records in
the data set corresponding to different earthquakes recorded at the same site,
however, we are entitled to take advantage of the considerable simplification
afforded by lumping €, and ¢,. The analysis for separate €, and ¢, is given in
Appendix A.

We propose our own method for determining the parameters. Equation (1) is
nonlinear in the parameters because of the terms involving A. We linearize the
problem with a Taylor’s-series expansion about trial values of the parameters
(Draper and Smith, 1981, pp. 462-464) and set

log A, + log(dl2 + h’2)1/2

log A, + log(d,? + 1'*)"” ®

log Ay + log(dy* +

)1/2
a
b
c

Ah

B = ; (3)
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and
(1 M, —6  (d+n)? {&_fil_[c,(dlz + 1% log(d + h2)1/2]} he i
e oy {%[a(d; + 12" log(dy® + h2)1/2]} e | @

where N is the total number of data points and 2’ and ¢’ are trial values of A
and c. In each new iteration 2" + AA replaces A of the previous iteration.
Practically any positive initial value should work for . We use 1.0 km. Zero,
however, will not work, because the partial derivatives that form the last
column of X are zero for zero #'. Equation (1) can now be replaced by the system

Y=XB +e, (5)

where e is the vector of deviations, which are composed of ¢, and ¢,. Equation
(5) is linear in the parameters to be determined and will be applied in an
iterative scheme. We assume that the components of e are normally distributed
with zero mean and variance-covariance matrix V. Ordinary least squares could
be used to solve equation (5) if the variance-covariance matrix V were diagonal
with equal elements (Searle, 1971, p. 87), but V is not diagonal because there is
a correlation between values recorded in the same earthquake. Generalized
least squares (Searle, 1971, p. 87), which involves weighting by the inverse of
the matrix V, could be used if V were known in advance, but, as will be shown,
V depends on o, and o,, and so we turn to the maximum-likelihood method.
The likelihood of the sample of observations is

L = (2m) V| exp| - 5(Y ~ XB)'V"}(Y - XB)| (6)

(Searle, 1971, p. 87), where T denotes matrix transposition and || denotes the
determinant. For a given V, maximizing L with respect to B is the equivalent of
minimizing

(Y - XB)"V-(Y — XB). (7)
The solution (Searle 1971, p. 87) is
B = (XTV-!X) 'XTV-ly. (8)

To derive an expression for the variance-covariance matrix V, we return to
equation (1) and note that a component of e represents the sum €, + ¢, and that
€, takes on a specific value for each record and ¢, takes on a specific value for
each earthquake. The covariance of two components of e corresponding to
different earthquakes is zero. The covariance of two components corresponding
to the same earthquake is o,”, the variance of €,. The variance of an individual
component is o, + ¢,°, the variance of €, + ¢,. Recall that the records are
numbered so that all records from the same earthquake are consecutive. The
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variance-covariance matrix V is therefore block-diagonal with each block corre-
sponding to an earthquake. We define a normalized matrix v by the equation

oiv =V, (9)
where o2 = 0.> + ¢,°. The matrix v is also block-diagonal
vi; O 0
0 wv, 0
v = . , (10)
0 O Ve

where N, is the number of earthquakes. The submatrix v; corresponding to
earthquake i is given by

1 v 4
v 1 -y

A N O (11)
Y v 1

where y = g,°/ (o-r2 + o-ez). The rank of matrix v, is R;, the number of recordings
for earthquake i. Substituting equation number (9) into equation (8) gives

B = (XTv !X) 'X7v-lY. (12)
Substituting equation number (9) into equation (8) gives for the likelihood
L = (2m) " lotvI exp| - H(Y - XB) (o?v) (Y - XB)|. (13

Taking the natural logarithm of equation (13) gives

N N . 1 1 o
InL = —Eln(Zﬂ') - Eln(az) - Elnlv\ - E(Y - XB) v (Y - XB)/c?.
(14)

The likelihood L must be maximized over all v, B, k, and o 2. For fixed vy, L
can be maximized with respect to B and 4 by iterating on equation (12) until
|Ah /h|is reduced below a specified limit, generally 1072, Since B and 4 do not
depend on o? for fixed ¥, we may then proceed to maximize L with respect to
o? without recomputing B or %; we differentiate equation (14) with respect to

o2, set the result equal to zero, and solve for o 2. The solution is

o? = (Y - XB) v- (Y - XB) /N. (15)

For each value of y, we compute values of B, h, o2, and the likelihood L
maximized with respect to B, A, and o 2. The final solution corresponds to the
value of y for which the logarithm of the likelihood (equation 14) is maximum.
The solution is found numerically by searching over v using the search routine
GOLDEN given by Press et al. (1989, p. 282).
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The value of o2 given by equation (15) is not unbiased. An unbiased estimate
is

6% = (Y - XB) v~ (Y - XB) /(N — 4), (16)

where N — 4 is the number of degrees of freedom, 4 being the rank of the
matrix X. This result is obtained by noting that, for the final value of vy, the
determination of B is a weighted least-squares problem with weighting matrix
v~ !, Draper and Smith (1981, pp. 108~109) have shown that such a problem is
the equivalent of an ordinary least-squares problem in a transformed variable.
Equation (16) follows from applying the usual rules (Searle, 1971, p. 93) to the
equivalent ordinary least-squares problem.

The rank of the matrix v is equal to the total number of recordings in the data
set, so it is advantageous to determine the inverse and determinant analyti-
cally. The formulas for doing so are given in Appendix B.

The coefficients of equation (1) determined by the method just described are
compared in Table 1 with the values obtained by Brillinger and Preisler (1985)
for our original data set (Joyner and Boore, 1981). Because the problem is
nonlinear, we use Monte Carlo methods to estimate uncertainties in the param-
eters. The results are given in a subsequent section. In the first row of Table 1,
(a — 6b) is compared, rather than a, because Brillinger and Preisler wrote their
equation in terms of M rather than M — 6. The agreement is nearly perfect.
The calculations that produced our result in Table 1 took 62 sec of CPU time on
a VAXstation 3100 for a data set consisting of 182 records from 23 earthquakes.

TwWO-STAGE METHODS

Return to equation (1) and let

P.=a+b(M,-6)+ce¢, (17)
TABLE 1
COMPARISON WITH BRILLINGER AND PREISLER (1985)
Parameter® Brillinger and Preisler (1985) This Paper
a—6b -1.229 —-1.229
b 0.277 0.277
c —0.00231 —0.00231
h 6.650 6.650
el 0.2284 0.2283
Al 0.1223 0.1222
&t 0.2309
5! 0.1236

* Parameter values correspond to the use of loga-
rithms to the base 10 in equation (1).

T Maximum-likelihood estimate.

! Based on an unbiased estimate of o 2.
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where M, is the magnitude of earthquake i. Linearizing the problem as before,
we set

[~ T

log A, + log(d,? + k*)"”
log A, + log(dy® + k?)”

Yl = N 3 (18)
1/2
log Ay + log(dy” + B'*)
C
Ah
P
B, =| .| (19)
PNE
and
_ , -
(42 + h,z)l/z {_[c/(dlz + hz)l/Z log(d’ + hg)l/Z]} Ey Ey - Eny
h=n'
d
@ eny {2 [e@r o st ey Ea Ba o B
h=h' s
. . .
(dy” + h/z)l/z {Eh—[c’(dzvz + hZ)l/2 ~ log(dy” + hZ)l/z]} Ey, Ey, - Eyy,
h=h'

(20)
where E,; = 1 if recording n comes from earthquake i and E,; = 0 otherwise.
As before, N is the total number of data points and &' and ¢’ are trial values of
h and c. In each new iteration, ' + Ah replaces &' of the previous iteration.

The initial value of A’ must be nonzero positive. Equation (1) can be replaced by
the system

Y, =X,B, te,, (21)

where e, is the vector of deviations with components ¢,. Since the components
of e, are assumed to be independent Gaussian random variables with zero
mean and variance (7 , the maximum-likelihood solution for B, is the same as
the ordinary least-squares solution (Searle, 1971, p. 87),

B, - (X,"X,) X, Y,. (22)

The matrix B, includes the estimates Pl of the quantities P;. We can use the
P, to determine a and b in equation (1), but to do so correctly we must take

account of the variance-covariance matrix of the P We can write
Po=a+b(M,—86)+ (P -P)+e,. (23)

Equation (23) may seem like a trivial rearrangement of equation (17), but it is
an essential step. Since we will use the estimates P to determine a and b, we
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need ﬁL on the left-hand side of the equation. Equation (23) shows the two

dlstlnct sources of the variance and covariance of P the error of estimate
P P;, and the intrinsic variability €, of the estlmated quantity. If we set

2
P,
Y.=| .|, (24)
P/\NE
a
B, - [3), (25)
and
1 M, -6
X, = : : ’ (26)
i MNE._ 6
equation (23) can then be written
Y, =X,B, +e,, (27)

where e, is the vector of deviations, which are composed of (P, — P,) and e,. P,
is the least-squares estimate of P; found in the first-stage regression, so P is an
unbiased estimate of P, with error (P P;) that is a linear combination of the
values of €., which is an independent random variable. The error of estimate
(P P,) is thereby uncorrelated with ¢,, and the variance-covariance matrix of

e, is given by
V, = var(P - P) + 1, (28)

where Var(f’ P) is the variance-covariance matrlx of the vector whose compo-
nents are (P P)), Lis the identity matrix, and o,”I i 1is the variance-covariance
matrix of the vector whose components are «,. Smce P is the element (B 1)ivg of

the vector B,, and since P, is the mean of P,

12

[var(f) B P)]ik = [Var(ﬁl)]i+2,k+2 (29)
and -can be obtained from the matrix
Var(ﬁl) = (XITXI)ilor2 (30)

(Searle, 1971, pp. 89-90).
The likelihood of the observations is

Ly = (2m) V2V, Pexp| - 1(Y, — X,B5) "V, (Y, — X,By)|. (31)
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Maximizing L, with respect to B, is the equlvalent of the generalized least-
squares problem with the weighting matrix V,~ ! (Searle, 1971, p. 87). The
solution is

ﬁz = (Xvaz—lxz)_lszvzole’ (32)

the only difficulty being that o, and therefore V, are not known. However, the
weighted least-squares problem is the equivalent of an ordinary least-squares
problem in a transformed variable (Draper and Smith, 1981, pp. 108-109). By
considering the equivalent ordinary least-squares problem, we can show (Searle,
1971, p. 93) that

E[(Y2 - X,B,) Vv, (Y, - xzfsz)] -N-2, (33)

where E[ ] denotes expectation and N — 2 is the number of degrees of freedom,
2 being the rank of matrix X,. The left-hand side of equation (33) is an implicit
function of ¢, through B2 and V, (see equations 28 and 32). We solve equation
(33) for o, numerlcally by the method of bisection (Press et al., 1989, p. 246).
That method prescribes the choice of trial values of g,. For each trial value of
o,, we solve equations (32) and (28) for B, and V, and substitute in equation
(33). The process is iterated until o, is determined to sufficient precision.

Variations of the two-stage method all have solutions of the form of equation
(32) but with different weighting matrices. In our early work, we used diagonal
weighting matrices (Joyner and Boore, 1981, 1982). In the case of peak horizon-
tal velocity and response spectral values, each earthquake was given equal
weight, and, in the case of peak horizontal acceleration, earthquakes recorded
at only one site were given zero weight and all other earthquakes were given
equal weight. Later we suggested (but did not use) a diagonal weighting matrix
with each earthquake having weight w, given by

w; = (Ur2/Ri + %2)71, (34)

where R; is the number of recordings for earthquake i and o, is determined
iteratively with zero as the starting value (Joyner and Boore, 1988). Fukushima
and Tanaka (1990) also used a diagonal weighting matrix. They weighted each
earthquake by the number of recordings. It was Masuda and Ohtake (1992) who
pointed out the need to include off-diagonal terms in the weighting matrix.
Their weighting matrix was the inverse of var(P; — P,). According to the analy-

sis above, their weighting would be correct if aez = (. We will show in the next
section, however, that such is not the case. Restating our conclusion in other
words, Masuda and Ohtake (1992) neglected the contribution of the intrinsic
variance of the estimated quantity P,.

To avoid misunderstanding, we should point out that, although Masuda and
Ohtake’s weighting in the second stage is the equivalent of assuming o, = 0,
their method is not the equivalent of setting €, = 0 in equation (1), because ¢, is
included in the quantities P, evaluated in the first-stage regression. Setting
€, = 0 in equation (1) leads to an ordinary least-squares problem, but, as
explained earlier, that is not what Masada and Ohtake did.

Results of applying the different weighting schemes in two-stage methods are
given in Table 2. The parameters A, ¢, and o, are the same in all cases because
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TABLE 2
COMPARISON OF Two-STAGE METHODS
Parameters® 1 2 3 4 5 [
a 0.415 0.478 0389 0.427 0499 0.463
b 0.290 0.249 0310 0.291 0.270 0.248
g, 0.201 0.134 0275 0.202

* Parameter values correspond to the use of logarithms to the
base 10 in equation (1). Other parameters in equation (1) are
determined in the first-stage regression and are the same in all
cases; the values are ¢ = —0.00255, A = 7.31, and 4, = 0.223

1. Weighting in the second stage by the inverse of the matrix in
equation (28).

2. Weighting in the second stage as used by Joyner and Boore
(1981) for peak horizontal acceleration.

3. Uniform weighting in the second stage.

4. Weighting in the second stage as suggested by Joyner and
Boore (1988), and given by equation (34) of the present paper.

5. Weighting in the second stage as used by Fukushima and
Tanaka (1990).

6. Weighting in the second stage as used by Masuda and Ohtake
(1992).

they are determined in the first stage, which is the same for all. For the other
parameters the differences are not large, indicating that weighting does not
have a large effect. As pointed out by Fukushima and Tanaka (1992), the
off-diagonal terms in the weighting matrix for the second-stage regression,
though required logically, are small. For the method given in column (1) of
Table 2, the maximum absolute value of an off-diagonal term is 0.19 times the
minimum absolute value of a diagonal term. As pointed out by Masuda and
Ohtake (1992), the off-diagonal terms arise because the estimates P, are
mutually correlated as a consequence of the fact that they were determined in
the first-stage regression along with the parameters 4 and c. To the extent to
which that correlation can be neglected, weighting according to equation (34) is
correct. The close agreement between columns 1 and 4 indicates that the
correlation can be neglected, but there is little reason to do so. The calculations
that produced the result in column 1 took only 17 sec of CPU time on a
VAXstation 3100.

COMPARISON OF ONE-STAGE AND TwoO-STAGE METHODS

To obtain an objective comparison of the two methods, we employ Monte
Carlo simulation (Press et al., 1989, p. 529). For each method we start with a
set of assumed values for the parameters of equation (1) obtained by applying
the method in question to the data set. We then take the magnitude and
distance values from the data set and use the assumed parameters in equation
(1) with the aid of a pseudorandom-number generator to simulate a set of
acceleration values, which we process by the method in question. We then
compute the means and standard deviations of the output parameters and
compare with the assumed input values. We also use the output parameters to
compute predictions at M = 6.5 and 7.5 for d = 0 and 25 km. The results based
on 100 simulations are shown in Table 3.
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Both methods performed well judging by Table 3. Both methods are essen-
tially unbiased, as can be seen by noting that, since there were 100 simulations,
the standard deviation of the mean from the simulations is one tenth of the
standard deviation of the individual values from the simulations. The largest
amount by which a mean value from the simulations differs from the assumed
value is only slightly greater than two standard deviations of the mean. The
stochastic uncertainty of parameter values from the two methods is comparable,
as can be seen by comparing standard deviations of individual parameter values
from the simulations.

Note particularly the predictions at zero distance for magnitudes 6.5 and 7.5.
There are very few data points in this range of magnitude and distance. It is
very encouraging to note that there is no bias in the predictions. Furthermore,
the standard deviation of the values calculated from the output parameters,
which represents the contribution to prediction error from stochastic uncer-
tainty in the parameters, is small compared to the assumed value of the
standard deviation of the residuals from the simulations, which is given by
o= (a’ + ¢*)?, indicating that o is a reasonable approximation of the total
prediction error.

To see how well the two methods do on a much sparser data set, we repeat the
Monte Carlo comparison, this time for peak horizontal velocity with the data set
we used in 1982 (Joyner and Boore, 1982, 1988), which includes 65 records from
13 earthquakes. For velocity there is an additional parameter s, which is added
to the right-hand side of equation (1) for data recorded at soil sites. The results
for 100 simulations are given in Table 4. The units of velocity are cm /sec. The
results, though not quite so good as in Table 3, are quite satisfactory for both
methods. For predictions at zero distance, the contribution to prediction error
from stochastic uncertainty in the parameters is larger than for the peak
acceleration data set, but still smaller than the value of o from the simulations,
indicating that o is not a gross underestimate of the total prediction error.

The Monte Carlo tests indicate that both methods give satisfactory results for
the data sets used in the tests. Of particular interest is a comparison of the two
methods on the data used by Fukushima and Tanaka (1990), to see if the
one-stage method is as successful as the two-stage method in separating the
magnitude dependence from the distance dependence and avoiding the error
produced by ordinary least-squares analysis of that data. Fukushima and
Tanaka used the equation

logA=a+bM;+clogd,, (35)

where A is peak horizontal acceleration (cm/sec?), M, is magnitude defined by
the Japan Meterorological Agency, and d, is hypocentral distance (km); a, b,
and ¢ are parameters chosen to fit the data. Table 5 shows the comparison of
the one-stage maximum-likelihood method, the two-stage method, and the
ordinary least-squares method applied to Fukushima and Tanaka’s (1990) data.
Weighting in the second stage of the two-stage method is by the inverse of the
matrix in equation (28). The one-stage maximum-likelihood method gives essen-
tially the same results as the two-stage method, and the results from the
ordinary least-squares method differ from those of the two-stage method in the
same way as found by Fukushima and Tanaka (1990). The results in Table 5 for
the two-stage method are virtually identical to the those given by Fukushima
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TABLE 5
COMPARISON BETWEEN THE ONE-STAGE MAXIMUM-LIKELIHOOD
METHOD, THE TWO-STAGE METHOD, AND THE ORDINARY
LEAST-SQUARES METHOD APPLIED TO FUKUSHIMA
AND TANAKA’S DATA

- 1in;
Perameter e ehood | TWOStaEe Legsrtds‘lizes

a 2.20 2.20 2.22
b 0.44 0.44 0.26
¢ -1.73 ~1.76 ~119
& 0.26 0.26

5, 0.19 0.21

& 0.33 0.34 0.33

* Parameter values correspond to the use of logarithms to the
base 10 in equation (35).

and Tanaka (1990), indicating that the differences in weighting have little
effect.

Of the two methods, only the two-stage method can readily be used with the
techniques described by Toro (1981) and McLaughlin (1991) for overcoming
the bias due to instruments that do not trigger. As explained by McLaughlin
(1991, p. 271), there are difficulties in applying those techniques to data with
correlated errors.
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APPENDIX A: ACCOUNTING FOR THE COMPONENT OF VARIABILITY
ASSOCIATED WITH THE SITE

The variability in ground-motion data can be separated into three compo-
nents: ¢,, an independent random variable that takes on a specific value for
each earthquake; €., an independent random variable that takes on a specific
value for each recording site; and ¢,, an independent random variable that
takes on a specific value for each record. The mean of €, over the population of
earthquakes is zero, and the variance is 062; €, represents the earthquake-to-
earthquake component of variability. The mean of €, over the population of
sites is zero, and the variance is g,”; €, represents the site-to-site component of
variability. The mean of e, over the populations records is zero, and the
variance is 002; €, represents the variability remaining after contributions from
site and source have been accounted for. Because there are few records in the
data set corresponding to different earthquakes recorded at the same site, we
took advantage in the text, as explained there, of the simplification provided by
lumping €, + €, = €,. Here in the Appendix we do the analysis for the separate
€, and €- In equatlon (1) we replace €, by €, + €,. The variance of ¢, is cr , and
0,2 = a + 0' . The only thing that changes for the one-stage method is the
variance-covariance matrix V. The covariance of observations of different earth-
quakes at different sites is zero, the covariance of observations of the same
earthquake at dlfferent 51tes is a- , and the variance of individual observations
is 02 = o + (r + 0' = 0' + 0' , Just as before. The covariance of observa-
tions of d1fferent earthquakes at the same site, however, is now ¢,°, whereas
before it was zero. As before We define a normalized matrix v by the equation
o?v=Vand deﬁne 7e = g, 2/0?. (In the text v, was denoted simply by y.) We
also define vy, = 6, /o2 We start out with v from equations (10) and (11) and
with v™! from equations (B1), (B2), and (B3). For the elements of v correspond-
ing to observations of different earthquakes at the same site, we substitute v,,
and we calculate the corresponding changes in v™! with the Sherman-Morrison
formula (Press et al., 1989, pp. 66—68). Otherwise the solution is the same as
before, except that the logarithm of the likelihood in equation (14) must now be
maximized numerically with respect to two variables y, and v, instead of one.
To find the maximum we use the downhill simplex method (Press et al., 1989,
pp. 289~293). In using the downhill simplex method, it is advisable to employ a
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transformation of variables. The variables y, and vy, are constrained to be
positive, and v, + y, < 1 because o,°> + ¢.” + 0,° = 2. The subroutine given by
Press et al., (1989) for implementing the downhill simplex method, however,
presumes that the independent variables may take on any real values. We use
the following transformation:

_ (Ye[ln(l + Y+ ) —In(l -y, — )] )1/2

2% + %)
_ (YS[In(l + Ye + Ys) - 111(1 Y — Ys)] )1/2 (Al)
2(%, + %) '
The inverse transformation is
pztanh(p2 + q2)
‘YQ = ?
(p* + 4%
2 2 2
g“tanh(p* + g*)
Ys = 53 : (A2)
(p*+4q%)

The results are compared in Table Al with the results of the one-stage method
described in the text. The differences are probably not significant.

For the analysis of a data set including both horizontal components, a
strategy similar to that described above can be used to accommodate the
covariance between orthogonal components recorded for the same earthquake at
the same site.

In the two-stage method, the difference is that the variance-covariance matrix
of the observations in the first stage is no longer diagonal, so the ordinary
least-squares method may no longer be used. Since the components of e, in
equation (21) are normally distributed with zero mean and variance-covariance
matrix of V,, the likelihood of the sample of observations is

Ly = (2m) V2V, 2exp| - 1(Y, - X,By)"V, (Y, - X;B,)| (A3)

TABLE Al

COMPARISON OF RESULTS BETWEEN METHODS DESCRIBED IN THE
TEXT AND IN APPENDIX A

Parameter® One-St.age One-Stage Two-St?ge Two Stage
Appendix A Text Appendix A Text
a 0.454 0.431 0.417 0.415
b 0.256 0.277 0.289 0.290
c —0.00217 —-0.00231 —0.00255 —0.00255
h 7.08 6.65 7.34 7.31
s, 0.188 0.214
5, 0.148 0.063
g, 0.239 0.231 0.223 0.223
5, 0.085 0.124 0.203 0.201

* Parameter values correspond to the use of logarithms to the
base 10 in equation (1).
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(Searle, 1971, p. 87). For a given V,, maximizing L, with respect to B, yields
B, - (X,"V, 'X,) X,V (A4)

(Searle 1971 p- 87) We define a normalized matrlx V) by the equation o.’v, =
V,, where ¢.* = ¢, + ¢,°, and we define y, = o, ? /5.2, The covariance of observa—
tions at different sites is zero, the covariance of observations of different
earthquakes at the same site is (rsz, and the variance of an individual observa-
tion is ¢.%. To determine the matrices v, and v, ', we start with the identity
matrix for both. For the elements of v, corresponding to observations of differ-
ent earthquakes at the same site, we substitute y,, and we calculate the
corresponding changes in v, ' with the Sherman-Morrison formula (Press
et al., 1989, pp. 66-68). Substituting o, v1 for V, in equation (A4) gives

B, = (X,"v,'X,) X, v, 'Y, (A5)

Substituting ¢,”v, for V, in equation (A3) and taking the natural logarithm
gives

N N 2 1
InL, =~ gln(%") - Eln(ar ) - §lnlv1|

1 ;
-5 (i —XBy) v (Y, - X,By)/q”. (46)

The likelihood L, must be maximized over all v,, B,, £, and o-2 For fixed v,,
L, can be max1mlzed with respect to B, and A by iterating on equation (A5)
untll AR /Rl is reduced below a spec1ﬁed limit, generally 10~2. Since B, and A
do not depend on 0' for fixed v,, we may then proceed to maximize L with
respect to o.” w1thout recomputing B or h. We dlfferentlate equation (A6) with
respect to 02 set the result equal to zero, and solve for a . The solution is

= (Y, - X,B,) v, (Y, - X,B,)/N. (A7)

For each value of y,, we compute values of Bl, h, 0 , and the likelihood L,
maximized with respect to By, &, and ;% The final solutlon corresponds to the
value of v, for which the logarlthm of the likelihood (equation A6) is maximum.
The solution is found numerically by searching over y, using the search routine
GOLDEN given by Press et al. (1989, p. 282).

The value of o, obtained from equation (A7) is not unbiased. An unbiased
estimate is given by

— (Y, - X,B,) v (Y, - X,B,)/(N - N, - 2), (A8)

where N — N, — 2 is the number of degrees of freedom. This result is obtained
by noting that for the final value of v,, the determlnatlon of B1 is a weighted
least-squares problem with weighting matrix v~!. Draper and Smith (1981, pp.
108-109) have shown that such a problem is the equivalent of an ordinary
least-squares problem in a transformed variable. Equation (A8) follows from
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applying the usual rules (Searle, 1971, p. 93) to the equivalent ordinary least-
squares problem.

The second stage of the two-stage method is done in the same way as
described in the text. The final results are compared in Table Al with the
results from the two-stage method described in the text.

As with the one-stage method, the two-stage method can be modified to
accommodate a data set including both horizontal components.

APPENDIX B: ANALYTICAL DETERMINATION OF THE INVERSE AND THE
DETERMINANT OF THE NORMALIZED VARIANCE-COVARIANCE MATRIX FOR
THE ONE-STAGE METHOD

Since the rank of the matrix v is equal to the total number of recordings in
the data set, it is advantageous to determine the inverse and determinant
analytically. The inverse of v is given by

vv' 0 0
0 v, ' - 0

vii=| | 2 i o (B1)
0 0 ST %

as can be verified by carrying out multiplication by v. The diagonal elements of

-1
v; = are

1+ (R, —2)y
1-(R,—1)y*+ (R, - 2)y’

(B2)

and the off-diagonal elements

—Y
1- (R, - Dy* + (R, -~ 2)y’

(B3)

as can be verified by performing the multiplication vivi’l. The determinant |v|
is equal to the product |v,|Iv,]... |VNe|. That proposition follows directly from the
definition of the determinant (e.g., Hildebrand, 1965, p. 10). Since the matrix v;
depends on i only through its rank R;, we may change the notation to vg . If
R, =1,lvg|=1If R, =2, Ivg|=1— v In general,

1- (R, —1)y* + (R, - 2)y

1+ (R, —2)y (B4)

IVR,-.] = IvR;—l'
To obtain this result, we note that a diagonal element of vi_l, given by equation
(B2), is also equal to

|VRi_1|

‘VRi\

; (B5)

by the well-known equation (Hildebrand, 1965, pp. 16—17) giving the elements
of an inverse matrix in terms of the cofactors of elements of the original matrix,
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because [vg, _,| is the cofactor of a diagonal element of v;. Equation (B4) can be
rewritten

1+ (R, - 1y
e, |=Ivg, -1I(1 - y)m, (B6)
which leads to
R; _
vel= 1~ v)ii—x—_% (BT)
and, finally,
Ve = (1= 7" (1 + [R; - 1]9). (B8)

Searle (1971, p. 462) gives expressions for V-1 and [V| that are equivalent to our
equations (9), (B1), (B2), (B3), and (B8). Searle’s expressions are used by
Abrahamson and Youngs (1992). The essential difference in our approach is
that we express things in terms of o? and y instead of o, and ¢,° and, as a
result, need to do numerical maximization of the likelihood over only one
variable y.
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