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METHODS FOR REGRESSION ANALYSIS OF 
STRONG-MOTION DATA 

BY WILLIAM B. JOYNER AND DAVID M. BOORE 

ABSTRACT 

We introduce a new computational method for implementing Brillinger and 
Preisler's (1984, 1985) one-stage maximum-likelihood analysis of strong- 
motion data. We also reexamine two-stage methods and agree with Masuda 
and Ohtake (1992) that rigorous analysis requires off-diagonal terms in the 
weighting matrix for the second-stage regression but note that Masuda and 
Ohtake failed to account for the earthquake-to-earthquake component of vari- 
ance. Analysis by Monte Carlo methods shows that both one-stage and 
two-stage methods, properly applied, are unbiased and that they have compa- 
rable uncertainties. Both give the same correct results when applied to the 
data that Fukushima and Tanaka (1990) have shown cannot be satisfactorily 
analyzed by ordinary least squares. The two-stage method is more efficient 
computationally, but for typical problems neither method requires enough time 
to make efficiency important. Of the two methods, only the two-stage method 
can readily be used with the techniques described by Toro (1981) and 
McLaughlin (1991) for overcoming the bias due to instruments that do not 
trigger. 

INTRODUCTION 

Empirical equations for predicting strong ground motion are typically fit to 
the strong-motion data set by the method of ordinary least squares. Campbell 
(1981, 1989) used weighted least squares in an attempt to compensate for the 
nonuniform distribution of data with respect to distance. We introduced a 
two-stage regression method designed to decouple the determination of the 
magnitude dependence from the determination of the distance dependence 
(Joyner and Boore, 1981). In the first stage, the distance dependence was 
determined along with a set of amplitude factors, one for each earthquake. In 
the second stage, the amplitude factors were regressed against magnitude to 
determine the magnitude dependence. Fukushima and Tanaka (1990) used a 
similar two-stage method on the Japanese peak horizontal acceleration data set 
and compared results with those from one-stage ordinary least squares. They 
showed that the one-stage ordinary least-squares results were seriously in 
error. They attributed the error to the strong correlation between magnitude 
and distance and the resulting trade-off between magnitude dependence and 
distance dependence. The correct distance dependence, given by the two-stage 
method and verified by analyzing individual earthquakes separately, showed a 
much stronger decay of peak acceleration with distance than the one-stage 
ordinary least-squares method, which had been used previously. 

In our original use of the two-stage method (Joyner and Boore, 1981, 1982), 
we included in the second-stage regression for peak acceleration only those 
earthquakes that had been recorded at more than one station, and we gave 
equal weight to each earthquake included. For peak velocity and response 
spectra, there were so few earthquakes in the data set that we were compelled 
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to use them all, and we gave each equal weight. Later we proposed a diagonal 
weighting scheme to be used in the second-stage regression (Joyner and Boore, 
1988). Fukushima and Tanaka's (1990) procedure for the second-stage regres- 
sion had the effect of weighting each earthquake by the number of recordings. 
Masuda and Ohtake (1992) proposed a weighting matrix for the second-stage 
regression different from any used earlier. They showed that off-diagonal terms 
need to be included in the weighting matrix, because the amplitude factors that 
are the dependent variables in the second-stage regression are mutually corre- 
lated as a consequence of the fact that they were determined in the first-stage 
regression along with the parameters that control the distance dependence. As 
Fukushima and Tanaka (1992) point out, however, the off-diagonal terms are 
small in magnitude. 

Brillinger and Preisler (1984, 1985) introduced what they called the random- 
effects model, which incorporated an explicit earthquake-to-earthquake compo- 
nent of variance in addition to the record-to-record component. They described 
one-stage maximum-likelihood methods for evaluating the parameters in the 
prediction equation. Abrahamson and Youngs (1992) introduced an alternative 
algorithm, which they considered more stable though less efficient. 

The concept of an earthquake-to-earthquake component of variance is implicit 
in the two-stage regression methods. The two-stage methods are not, however, 
exactly equivalent to the one-stage maximum-likelihood methods, and the rela- 
tionship of one to the other is not obvious. Both the one-stage and two-stage 
methods are based on maximum likelihood. In the one-stage methods, the 
parameters are all determined simultaneously by maximizing the likelihood of 
the set of observations. In the two-stage methods, the parameters controlling 
distance dependence and a set of amplitude factors, one for each earthquake, 
are determined in the first stage, by maximizing the likelihood of the set of 
observations. The parameters controlling magnitude dependence are then deter- 
mined in the second stage by maximizing the likelihood of the set of amplitude 
factors. On the face of it, one might expect either method to give satisfactory 
results. The one-stage method may be more elegant mathematically, but the 
two-stage method is conceptually simpler. The two-stage method can be consid- 
ered the analytical equivalent of the graphical method employed by Richter 
(1935, 1958) in developing the attenuation curve that forms the basis for the 
local magnitude scale in southern California. As we will show, the two-stage 
method is more efficient computationally, but the one-stage method requires so 
little computer time that efficiency is not really an issue. 

In view of the number of different approaches that have been proposed, we 
believe it timely to attempt to sort out how these approaches relate to each 
other. We begin by developing our own computational method for one-stage 
maximum-likelihood analysis, which makes use of the conventional mathemat- 
ics of regression analysis. We then reexamine two-stage methods and derive the 
correct weighting for the second stage. Finally, we examine estimation errors 
and compare the one-stage method with the two-stage method by Monte Carlo 
simulations. To illustrate the discussion, we use our original peak horizontal 
acceleration data set (Joyner and Boore, 1981), which differs slightly from the 
data set used later (Joyner and Boore, 1982, 1988). This choice facilitates 
comparison with Brillinger and Preisler (1984, 1985), who used our original 
data set, which includes 182 records from 23 earthquakes. 
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ONE-STAGE MAXIMUM-LIKELIHOOD METHODS 

We use the formulation of Brillinger and Preisler (1984, 1985) and fit the data 
by the equation 

l o g A n = a  + b ( M n - 6  ) - l o g ( d n  2 + h 2 ) l / 2 + c ( d n  2 + h2)1/2 + E r -~- Ee, (1) 

where A n is peak horizontal acceleration for the nth  record; M~ is the moment 
magnitude (Hanks and Kanamori,  1979) of the earthquake corresponding to the 
n th  record; d n is the shortest distance from the recording site of the n th  record 
to the vertical projection of the earthquake fault rupture on the surface of the 
Earth; e r is an independent random variable tha t  takes on a specific value for 
each record; e e is an independent random variable tha t  takes on a specific value 
for each earthquake; and a, b, h, and c are parameters to be determined. The 
records are numbered so tha t  all records from the same earthquake are consecu- 
tive. For all numerical results, the units of acceleration and distance are g and 
km, respectively. The mean of e e over the population of earthquakes is zero, and 
the variance is ~ 2. e , ee represents the earthquake-to-earthquake component of 
variability. The mean of e r over the population of records is zero, and the 
variance is (#2., er represents the site-to-site component of variability plus all 
other sources of variability not represented by e e. 

Strictly speaking, the site-to-site component of variability should be separated 
out in the same way as the earthquake-to-earthquake component, e r should be 
considered the sum of two variables: es, an independent random variable tha t  
takes on a specific value for each site, and %, an independent random variable 
tha t  takes on a specific value for each record. Because there are few records in 
the data set corresponding to different earthquakes recorded at the same site, 
however, we are entitled to take advantage of the considerable simplification 
afforded by lumping es and e o. The analysis for separate e s and eo is given in 
Appendix A. 

We propose our own method for determining the parameters.  Equation (1) is 
nonlinear in the parameters because of the terms involving h. We linearize the 
problem with a Taylor's-series expansion about trial values of the parameters 
(Draper and Smith, 1981, pp. 462-464) and set 

y = 

log A 1 + log(d12 + h'2) 1/2 

log A S + log(d22 + h'2) 1/2 

log A N + log(dN 2 + h'2) 1/~ 

(2) 

(3) 
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X = 

1 M 1 - 6 (dl 2 + h'2) 1/2 

1 M 2 - 6 (d22 + h'2) 1/2 

1 M N - 6  (dN  2 + h ' 2 )  1/2 

0 , 2 

+ h2)1/2-1°g(d12+h2)l/2]}h=h' 

+ h2)1/2- l°g(d22 + h2)1/21} h=h' 

+ h2)1/2- l°g(dN2? h2)1/2]} h = h '  

, ( 4 )  

where N is the total number of data points and h' and c' are trial values of h 
and c. In each new iteration h ' +  h h replaces h' of the previous iteration. 
Practically any positive initial value should work for h'. We use 1.0 km. Zero, 
however, will not work, because the partial derivatives tha t  form the last 
column of X are zero for zero h'. Equation (1) can now be replaced by the system 

Y = X B +  e, (5) 

where e is the vector of deviations, which are composed of 6 r and %. Equation 
(5) is linear in the parameters to be determined and will be applied in an 
iterative scheme. We assume that  the components of e are normally distributed 
with zero mean and variance-covariance matrix V. Ordinary least squares could 
be used to solve equation (5) if the variance-covariance matrix V were diagonal 
with equal elements (Searle, 1971, p. 87), but V is not diagonal because there is 
a correlation between values recorded in the same earthquake. Generalized 
least squares (Searle, 1971, p. 87), which involves weighting by the inverse of 
the matrix V, could be used if V were known in advance, but, as will be shown, 
V depends on ~r and ~e, and so we turn to the maximum-likelihood method. 
The likelihood of the sample of observations is 

L = (27r)-N/2N'] 1/2exp[- l ( y  _ X B ) T v - I ( y  _ XB)] (6) 

(Searle, 1971, p. 87), where T denotes matrix transposition and ][ denotes the 
determinant.  For a given V, maximizing L with respect to B is the equivalent of 
mmamlzmg 

(Y -- K B ) T V -  I(Y - KB) .  (7) 

The solution (Searle 1971, p. 87) is 

]~ = ( x T v  l x ) - l x T v - l y .  (8) 

To derive an expression for the variance-covariance matrix V, we return to 
equation (1) and note tha t  a component o fe  represents the sum E r d- E e and that  
e r takes on a specific value for each record and 6 e takes on a specific value for 
each earthquake. The covariance of two components of e corresponding to 
different earthquakes is zero. The covariance of two components corresponding 
to the same earthquake is ere2 , the variance of Ee. The variance of an individual 
component is ~rr 2 + ~f ,  the variance of 6 r ~- ~e" Recall tha t  the records are 
numbered so tha t  all records from the same earthquake are consecutive. The 
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variance-covariance matrix V is therefore block-diagonal with each block corre- 
sponding to an earthquake. We define a normalized matrix v by the equation 

0-2V = V ,  (9) 

where ~r 2 = ~r 2 + %2. The matrix v is also block-diagonal 

o . . .  

V 2 "'" 0 
V = 

0 "'" V N e  

(10) 

where Ne is the number  of earthquakes.  The submatrix v i corresponding to 
ear thquake i is given by 

V i = 

1 3, - . .  3 , ]  

3' 1 ... 

3, 3, .-- 

(11) 

where 3, = o'~2/(o'~ 2 + ~e 2). The rank of matrix v i is R i, the number  of recordings 
for ear thquake i. Subst i tut ing equation number  (9) into equation (8) gives 

= ( X T v -  l x )  - IXT V -  1 y .  (12) 

Substi tut ing equation number  (9) into equation (6) gives for the likelihood 

L = ( 2 7 r ) - N / 2 1 ( r 2 v l - 1 / 2 e x p [ - ½ ( Y  - XB)T((r2v)  l ( y _  XB)].  (13) 

Taking the natural  logarithm of equation (13) gives 

In L = 
N 1 1 

- Nln(2~)2 - ln(o -2) - ~ln[vl - ~ ( Y  - XB)Tv-~(Y -- X B ) / o  -2. 

(14) 

The likelihood L must  be maximized over all 3/, B, h, and ~ 2. For fixed 3,, L 
can be maximized with respect to B and h by iterating on equation (12) until 
lAb~hi is reduced below a specified limit, generally 10 -3. Since l~ and h do not 
depend on ~2 for fixed 3,, we may then proceed to maximize L with respect to 
~r 2 without recomputing B or h; we differentiate equation (14) with respect to 
cr 2, set the result  equal to zero, and solve for ~r 2. The solution is 

~r 2 = (Y - x B ) T v - I ( Y  -- X B ) / N .  (15) 

For each value of T, we compute values of B, h, ~2, and the likelihood L 
maximized with respect to B, h, and ~ 2. The final solution corresponds to the 
value of T for which the logarithm of the likelihood (equation 14) is maximum. 
The solution is found numerically by searching over T using the search routine 
GOLDEN given by Press et al. (1989, p. 282). 
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The value of (r 2 given by equation (15) is not unbiased. An unbiased estimate 
is 

9 2 (Y - XB)  T = v - l ( Y  - X B ) / ( N  - 4 ) ,  (16) 

where N - 4 is the number  of degrees of freedom, 4 being the rank of the 
matrix X. This result  is obtained by noting that,  for the final value of % the 
determination of B is a weighted least-squares problem with weighting matrix 
v -1. Draper and Smith (1981, pp. 108-109) have shown that  such a problem is 
the equivalent of an ordinary least-squares problem in a transformed variable. 
Equation (16) follows from applying the usual rules (Searle, 1971, p. 93) to the 
equivalent ordinary least-squares problem. 

The rank of the matrix v is equal to the total number  of recordings in the data 
set, so it is advantageous to determine the inverse and determinant  analyti- 
cally. The formulas for doing so are given in Appendix B. 

The coefficients of equation (1) determined by the method jus t  described are 
compared in Table 1 with the values obtained by Brillinger and Preisler (1985) 
for our original data set (Joyner and Boore, 1981). Because the problem is 
nonlinear, we use Monte Carlo methods to est imate uncertainties in the param- 
eters. The results are given in a subsequent  section. In the first row of Table 1, 
(a - 6b) is compared, ra ther  than a, because Brillinger and Preisler wrote their 
equation in terms of M rather  than M - 6. The agreement is nearly perfect. 
The calculations that  produced our result  in Table 1 took 62 sec of CPU time on 
a VAXstation 3100 for a data set consisting of 182 records from 23 earthquakes.  

T w O - S T A G E  M E T H O D S  

Return to equation (1) and let 

Pi = a + b( M i - 6 )  + e e, (17) 

TABLE 1 

COMPARISON WITH BRILLINGER AND PREISLER (1985) 

Parameter* Brillinger and Preisler (1985) This Paper 

a - 6b  - 1 .229 - 1 .229 

b 0 .277  0 .277  
c - 0 .00231  - 0 .00231  

h 6 .650  6 .650  

O'r ~ 0 .2284  0 .2283  

(re* 0 .1223  0 .1222  

O'r $ 0 .2309  

~e* 0 .1236  

* P a r a m e t e r  v a l u e s  c o r r e s p o n d  to  t h e  u s e  of  loga-  

r i t h m s  to  t h e  b a s e  10 i n  e q u a t i o n  (1). 
* M a x i m u m - l i k e l i h o o d  e s t i m a t e .  
* B a s e d  on  a n  u n b i a s e d  e s t i m a t e  of  q 2. 
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where  M i is the magn i tude  of ea r thquake  i. L inear iz ing  the problem as before, 
we set 

log A 1 + log(d12 + h'2)  1/2 

log A 2 + log(d22 + h'2) 1/2 

log A N ÷ log(dN 2 + h'2) 1/2 

= l P1 ' B1 ;N~ 

Y1 = (18) 

(19) 

and  

(d l  2 + h'2) 1/2 

(d2 2 ÷ h'2) 1/2 

(d2v 2 + h,2) 1/2 

0 , 2 _ - I - h  2 )1/2]} Ell . . .  EINe 

E2Ne 

ENNe 

(20) 

where  Eni = 1 if  recording n comes from ea r thquake  i and  Eni = 0 otherwise.  
As before, N is the total  numbe r  of da ta  points and  h' and c' are tr ial  values of 
h and  c. In each new i terat ion,  h' + h h  replaces h' of the  previous i terat ion.  
The init ial  value of h' m u s t  be nonzero positive. Equat ion  (1) can be replaced by 
the sys tem 

Y1 = XIB1 + e l ,  (21) 

where e I is the vector of deviat ions wi th  components  {5 r. Since the  components  
of e I are a s sumed  to be independent  Gauss ian  r andom variables wi th  zero 
mean  and var iance ~r 2, the maximum-l ikel ihood solution for B 1 is the  same as 
the ord inary  leas t -squares  solution (Searle, 1971, p. 87), 

n l  = (Xl T Xl )- Ix1T Y1. (22) 

The mat r ix  1~ 1 includes the es t imates  fi/ of the quant i t ies  Pi. We can use the 
Pi to de te rmine  a and  b in equat ion (1), bu t  to do so correctly we m u s t  take  
account of the variance-covariance mat r ix  of the fi/. We can wri te  

-fii = a  + b ( M  i - 6 )  + ( f i i -  P/) + ee" (23) 

Equat ion  (23) m a y  seem like a tr ivial  r e a r r a n g e m e n t  of equat ion (17), bu t  it  is 
an  essent ia l  step. Since we will use the es t imates  fii to de te rmine  a and  b, we 
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need /~i on the left-hand side of the equation• Equation (23) shows the two 
distinct sources of the variance and covariance of Pi ,  the error of estimate 
Pi - P i ,  and the intrinsic variability e e of the est imated quantity. If  we set 

Y2 = 

B 2 = 

P2 
(24) 

(25) 

and 

X 2 = 

1 M 1 - 6 

1 M e - 6 

1 MNe--6 

(26) 

equation (23) can then be writ ten 

Y 2  = X 2 B 2  -I- e 2 ,  (27) 

where e 2 is the vector of deviations, which are composed of (t~i - P i )  and e e .  Pi 
is the least-squares est imate of Pi found in the first-stage regression, so Pi is an 
unbiased estimate of Pi with error ( P i  - P i )  that  is a linear combination of the 
values of e r,  which is an independent random variable• The error of estimate 
(t~i - P i )  is thereby uncorrelated with ee, and the variance-covariance matrix of 
e~ is given by 

V 2 = va r (P  - P)  + o-e2I, (28) 

where var(P - P) is the variance-covariance matrix of the vector whose compo- 
nents are ( f i i  - P i ) ,  I is the identity matrix, and ~eeI is the variance-covariance 
matrix of the vector whose components are Ee. Since/~i is the element (21)i+ e of 

the vector 1~1, and since Pi is the mean of -fii, 

[ v a r ( P -  P)]ik = [var(13')]i+e,k+e (29) 

and can be obtained from the matrix 

var(B1 ) T 1 : (Xl  x , )  e (30) 

(Searle, 1971, pp. 89-90)• 
The likelihood of the observations is 

L 2 = ( 2 ~ ) - Y e / 2 [ V 2 1 - 1 / 2 e x p [ - - ½ ( Y 2  -- X~B2)Tv2-1(Y2 - X2B2)] • (31) 
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Maximizing L 2 with respect to B 2 is the equivalent of the generalized least- 
squares problem with the weighting matrix V2 -1 (Searle, 1971, p. 87). The 
solution is 

= ( 3 2 )  

the only difficulty being that  (r e and therefore Y 2 are not known. However, the 
weighted least-squares problem is the equivalent of an ordinary least-squares 
problem in a t ransformed variable (Draper and Smith, 1981, pp. 108-109). By 
considering the equivalent ordinary least-squares problem, we can show (Searle, 
1971, p. 93) that  

= (33) 

where E[ ] denotes expectation and N - 2 is the number  of degrees of freedom, 
2 being the rank of matrix X 2. The left-hand side of equation (33) is an implicit 
function of ~e through B 2 and V 2 (see equations 28 and 32). We solve equation 
(33) for (r e numerically by the method of bisection (Press et al. ,  1989, p. 246). 
That method prescribes the choice of trial values of ae" For each trial value of 
~e, we solve equations (32) and (28) for I~ 2 and V 2 and substi tute in equation 
(33). The process is i terated until ~e is determined to sufficient precision. 

Variations of the two-stage method all have solutions of the form of equation 
(32) but  with different weighting matrices. In our early work, we used diagonal 
weighting matrices (Joyner and Boore, 1981, 1982). In the case of peak horizon- 
tal velocity and response spectral values, each ear thquake was given equal 
weight, and, in the case of peak horizontal acceleration, ear thquakes recorded 
at only one site were given zero weight and all other ear thquakes were given 
equal weight. Later  we suggested (but did not use) a diagonal weighting matrix 
with each ear thquake having weight w i given by 

W i = ( O - r 2 / R i  + O'e2) -1, (34) 

where R i is the number  of recordings for ear thquake i and % is determined 
iteratively with zero as the starting value (Joyner and Boore, 1988). Fukushima 
and Tanaka (1990) also used a diagonal weighting matrix. They weighted each 
ear thquake by the number  of recordings. It was Masuda and Ohtake (1992) who 
pointed out the need to include off-diagonal terms in the weighting matrix. 
Their weighting matrix was the inverse o f  v a r ( / ~ i  - Pi).  According to the analy- 
sis above, their weighting would be correct if (re 2 = 0. We will show in the next 
section, however, that  such is not the case. Restat ing our conclusion in other 
words, Masuda and Ohtake (1992) neglected the contribution of the intrinsic 
variance of the est imated quanti ty  Pi. 

To avoid misunderstanding, we should point out that, although Masuda and 
Ohtake's weighting in the second stage is the equivalent of assuming ~e = 0, 
their method is not the equivalent of setting e e = 0 in equation (1), because e e is 
included in the quantities Pi evaluated in the first-stage regression. Setting 
e e = 0 in equation (1) leads to an ordinary least-squares problem, but, as 
explained earlier, tha t  is not what  Masada and Ohtake did. 

Results of applying the different weighting schemes in two-stage methods are 
given in Table 2. The parameters  h, c, and ~r r are the same in all cases because 
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T AB L E  2 

COMPARISON OF Two-STAGE METHODS 

Paramete rs*  1 2 3 4 5 6 

a 0.415 0 .478  0 .389  0 .427  0 .499  0.463 
b 0.290 0 .249  0 .310  0 .291  0 .270  0.248 
5 e 0.201 0.134 0 .275  0.202 

* Parameter values correspond to the use of logarithms to the 
base 10 in equation (1). Other parameters in equation (1) are 
determined in the first-stage regression and are the same in all 
cases; the values are c = -0.00255, h = 7.31, and ~r = 0.223 

1. Weighting in the second stage by the inverse of the matrix in 
equation (28). 

2. Weighting in the second stage as used by Joyner and Boore 
(1981) for peak horizontal acceleration. 

3. Uniform weighting in the second stage. 
4. Weighting in the second stage as suggested by Joyner and 

Boore (1988), and given by equation (34) of the present paper. 
5. Weighting in the second stage as used by Fukushima and 

Tanaka (1990). 
6. Weighting in the second stage as used by Masuda and Ohtake 

(1992). 

t hey  are  d e t e r m i n e d  in the  f i rs t  s tage,  which  is the  s a m e  for all. For  the  o ther  
p a r a m e t e r s  the  differences  a re  not  large,  ind ica t ing  t h a t  we igh t ing  does not  
have  a la rge  effect. As po in ted  out  by  F u k u s h i m a  and  T a n a k a  (1992), the  
off-diagonal  t e r m s  in the  we igh t ing  m a t r i x  for the  second-s tage  regress ion ,  
t hough  requ i red  logically, a re  small .  Fo r  the  me thod  g iven in co lumn (1) of 
Table  2, the  m a x i m u m  abso lu te  va lue  of an  off-diagonal  t e r m  is 0.19 t imes  the  
m i n i m u m  abso lu te  va lue  of a d iagonal  t e rm.  As po in ted  out  by  M a s u d a  and  
O h t a k e  (1992), the  off-diagonal  t e r m s  ar i se  because  the  e s t i m a t e s  /~i a re  
m u t u a l l y  cor re la ted  as a consequence  of the  fact  t h a t  t hey  were  d e t e r m i n e d  in 
the  f i r s t - s t age  regress ion  a long  wi th  the  p a r a m e t e r s  h and  c. To the  ex ten t  to 
which  t h a t  cor re la t ion  can  be neglected,  we igh t ing  according  to equa t ion  (34) is 
correct.  The  close a g r e e m e n t  be t ween  co lumns  1 a n d  4 ind ica tes  t h a t  the  
cor re la t ion  can  be neglected,  bu t  t he re  is l i t t le  r e a son  to do so. The  ca lcula t ions  
t h a t  p roduced  the  r e su l t  in co lumn 1 took only 17 sec of  C P U  t ime  on a 
VAXsta t ion  3100. 

COMPARISON OF ONE-STAGE AND Two-STAGE METHODS 

To obta in  an  objective compar i son  of the  two methods ,  we employ  Monte  
Car lo  s imu la t ion  (Press  et al., 1989, p. 529). For  each  m e t h o d  we s t a r t  wi th  a 
se t  of  a s s u m e d  va lues  for the  p a r a m e t e r s  of equa t ion  (1) ob ta ined  by  app ly ing  
the  m e t h o d  in ques t ion  to the  d a t a  set.  We t h e n  t a k e  the  m a g n i t u d e  and  
d is tance  va lues  f rom the  d a t a  se t  and  use  the  a s s u m e d  p a r a m e t e r s  in equa t ion  
(1) wi th  the  aid of a p s e u d o r a n d o m - n u m b e r  g e n e r a t o r  to s imu la t e  a se t  of  
acce le ra t ion  va lues ,  which  we process  by  the  m e t h o d  in quest ion.  We t h e n  
compute  the  m e a n s  and  s t a n d a r d  dev ia t ions  of  the  o u t p u t  p a r a m e t e r s  and  
compare  wi th  the  a s s u m e d  inpu t  values:  We also use  the  ou tpu t  p a r a m e t e r s  to 
compute  predic t ions  a t  M = 6.5 and  7.5 for d = 0 and  25 kin. The  r e su l t s  b a s e d  
on 100 s imu la t ions  a re  shown  in Table  3. 
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Both methods performed well judging by Table 3. Both methods are essen- 
tially unbiased, as can be seen by noting that, since there were 100 simulations, 
the s tandard deviation of the mean from the simulations is one tenth of the 
s tandard deviation of the individual values from the simulations. The largest 
amount  by which a mean value from the simulations differs from the assumed 
value is only slightly greater than two standard deviations of the mean. The 
stochastic uncertainty of parameter  values from the two methods is comparable, 
as can be seen by comparing s tandard deviations of individual parameter  values 
from the simulations. 

Note particularly the predictions at zero distance for magnitudes 6.5 and 7.5. 
There are very few data points in this range of magnitude and distance. It is 
very encouraging to note that  there is no bias in the predictions. Furthermore,  
the standard deviation of the values calculated from the output parameters,  
which represents the contribution to prediction error from stochastic uncer- 
tainty in the parameters,  is small compared to the assumed value of the 
s tandard deviation of the residuals from the simulations, which is given by 
o = (O'r 2 -~- O'e2) 1/2,  indicating that  cr is a reasonable approximation of the total 
prediction error. 

To see how well the two methods do on a much sparser data set, we repeat  the 
Monte Carlo comparison, this time for peak horizontal velocity with the data set 
we used in 1982 (Joyner and Boore, 1982, 1988), which includes 65 records from 
13 earthquakes.  For velocity there is an additional parameter  s, which is added 
to the right-hand side of equation (1) for data recorded at soil sites. The results 
for 100 simulations are given in Table 4. The units of velocity are cm/sec.  The 
results, though not quite so good as in Table 3, are quite satisfactory for both 
methods. For predictions at zero distance, the contribution to prediction error 
from stochastic uncertainty in the parameters  is larger than for the peak 
acceleration data set, but  still smalldr than the value of (r from the simulations, 
indicating that  ~ is not a gross underest imate  of the total prediction error. 

The Monte Carlo tests indicate that  both methods give satisfactory results for 
the data sets used in the tests. Of particular interest  is a comparison of the two 
methods on the data used by Fukushima and Tanaka (1990), to see if the 
one-stage method is as successful as the two-stage method in separating the 
magnitude dependence from the distance dependence and avoiding the error 
produced by ordinary least-squares analysis of that  data. Fukushima and 
Tanaka used the equation 

log A = a + b M j  + c l o g  dh, (35) 

where A is peak horizontal acceleration (cm/sec2), Mj is magnitude defined by 
the Japan  Meterorological Agency, and d h is hypocentral distance (km); a, b, 
and c are parameters  chosen to fit the data. Table 5 shows the comparison of 
the one-stage maximum-likelihood method, the two-stage method, and the 
ordinary least-squares method applied to Fukushima and Tanaka's (1990) data. 
Weighting in the second stage of the two-stage method is by the inverse of the 
matrix in equation (28). The one-stage maximum-likelihood method gives essen- 
t ially the same results as the two-stage method, and the results from the 
ordinary least-squares method differ from those of the two-stage method in the 
same way as found by Fukushima and Tanaka (1990). The results in Table 5 for 
the two-stage method are virtually identical to the those given by Fukushima 



R E G R E S S I O N  A N A L Y S I S  O F  S T R O N G - M O T I O N  D A T A  4 8 1  

© 

> 

© 

© 

© 

© 

.< 

© 

© 

© 

© 

© 

o ~ 

< 

< 

I < 

o 

I < 

c'~ ¢q 

o c 5  

¢q co 

¢q ¢q 

d 
© 

E ~  

© 

II II 11 II 

II II II II 

¢0 

,.Q 

4-z 

tm 
o 

~+~ 
o 

03 

o ¢.~ 

~3 

<D 

,+ 



482 W. B. J O Y N E R  AND D. M. BOORE 

TABLE 5 

COMPARISON BETWEEN THE ONE-STAGE MAXIMUM-LIKELIHOOD 
METHOD, THE Two-STAGE METHOD, AND THE ORDINARY 

LEAST-SQUARES METHOD APPLIED TO FUKUSHIMA 
AND TANAKA'S DATA 

One-Stage Two-Stage Ordinary 
Parameter* Maximum-Likelihood Least Squares 

a 2.20 2.20 2.22 
b 0.44 0.44 0.26 
c - 1.73 - 1.76 - 1.19 
~r 0.26 0.26 
~e 0.19 0.21 

0.33 0.34 0.33 

* Pa ramete r  values correspond to the  use of logari thms to the 
base 10 in equation (35). 

and Tanaka (1990), indicating that the differences in weighting have little 
effect. 

Of the two methods, only the two-stage method can readily be used with the 
techniques described by Toro (1981) and McLaughlin (1991) for overcoming 
the bias due to instruments that do not trigger. As explained by McLaughlin 
(1991, p. 271), there are difficulties in applying those techniques to data with 
correlated errors. 
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APPENDIX A: ACCOUNTING FOR THE COMPONENT OF VARIABILITY 
ASSOCIATED WITH THE SITE 

The  va r i ab i l i t y  in g round-mot ion  d a t a  can  be s e p a r a t e d  into th ree  compo- 
nents :  e~, an  i n d e p e n d e n t  r a n d o m  va r i ab l e  t h a t  t a k e s  on a specific va lue  for 
each  e a r t h q u a k e ;  es, an  i n d e p e n d e n t  r a n d o m  va r i ab l e  t h a t  t a k e s  on a specific 
va lue  for each  record ing  site; and  %, an  i n d e p e n d e n t  r a n d o m  va r i ab l e  t h a t  
t a k e s  on a specific va lue  for each  record.  The  m e a n  of e e over  the  popu la t ion  of 
e a r t h q u a k e s  is zero, and  the  va r i ance  is a~ 2", e e r e p r e s e n t s  the  e a r t h q u a k e - t o -  
e a r t h q u a k e  c o m p o n e n t  of var iab i l i ty .  The  m e a n  of e s over  the  popu la t ion  of 
s i tes  is zero, and  the  va r i ance  is as e', es r e p r e s e n t s  the  s i te- to-s i te  c o m p o n e n t  of  
var iab i l i ty .  The  m e a n  of e o over  the  popu la t ions  records  is zero, and  the  
va r i ance  is ao 2", eo r e p r e s e n t s  the  va r i ab i l i t y  r e m a i n i n g  a f t e r  con t r ibu t ions  f rom 
site and  source  h a v e  been  accounted  for. Because  the re  a re  few records  in the  
d a t a  se t  co r respond ing  to d i f ferent  e a r t h q u a k e s  recorded  a t  the  s a m e  site, we 
took a d v a n t a g e  in the  text ,  as  exp la ined  there ,  of the  s impl i f ica t ion  p rov ided  by  
l u m p i n g  e~ + % = e r. H e r e  in the  Append ix  we do the  ana lys i s  for the  s e p a r a t e  
e~ and  %. In  equa t ion  (1) we rep lace  e r by  e~ + %. The  va r i ance  of e r is ar 2, and  

2 2 2 
a r = a s + a o . The  only th ing  t h a t  changes  for the  one-s tage  m e t h o d  is the  
va r i ance -cova r i ance  m a t r i x  V. The  covar iance  of obse rva t ions  of d i f ferent  ea r th -  
q u a k e s  a t  d i f ferent  s i tes  is zero, the  covar iance  of obse rva t ions  of the  s a m e  
e a r t h q u a k e  a t  d i f ferent  s i tes  is a~ 2, and  the  va r i ance  of ind iv idua l  obse rva t ions  
is a 2 = ao2 + a 2  + O.e 2 : O-r2 ÷ ae2, j u s t  as before.  The  covar iance  of observa-  
t ions of  d i f ferent  e a r t h q u a k e s  a t  the  s a m e  site, however ,  is now a~ 2, w h e r e a s  
before  it  was  zero. As before,  we define a n o r m a l i z e d  m a t r i x  v by  the  equa t ion  
a 2v = V and  define ~e = ae2//a 2. ( In  the  t ex t  ~e was  deno ted  s imp ly  by  %) We 
also define Ts = a~2//a2. We s t a r t  out  wi th  v f rom equa t ions  (10) and  (11) and  
wi th  v 1 f rom equa t ions  (B1), (B2), and  (B3). For  the  e l e m e n t s  of v cor respond-  
ing to obse rva t ions  of  d i f ferent  e a r t h q u a k e s  a t  the  s a m e  site, we subs t i t u t e  ~/s, 
and  we ca lcu la te  the  co r respond ing  changes  in v - 1  wi th  the  S h e r m a n - M o r r i s o n  
f o r m u l a  (Press  et al. ,  1989, pp. 66-68) .  O the rwi se  the  solut ion is the  s a m e  as 
before,  except  t h a t  the  l o g a r i t h m  of the  l ikel ihood in equa t ion  (14) m u s t  now be 
m a x i m i z e d  n u m e r i c a l l y  wi th  r e spec t  to two va r i ab l e s  ~,~ a n d  % in s t ead  of one. 
To find the  m a x i m u m  we use  the  downhi l l  s implex  m e t h o d  (Press  et al. ,  1989, 
pp. 289-293) .  In  u s ing  the  downhi l l  s implex  me thod ,  it  is adv i sab le  to employ  a 
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t r ans format ion  of variables.  The variables %2 and  ~s are const ra ined to be 
positive, and  Te + % < 1 because q2 + (r82 + % = ~ 2. The subrout ine  given by 
Press  et  a l . ,  (1989) for implement ing  the downhill  simplex method,  however, 
presumes  t h a t  the independent  variables m a y  take  on any  real values. We use 
the following t ransformat ion:  

p = 
Te[ln( + Te + Ts) - ln(1 - T~ - Ts)] / 1/2, 

2(% + vs) ) 
')'s[ln( + ~'e + T~) - ln(1 - % - "Ys)] ~1/2 

q = 2 (ye  + ")'8) ) . (A1) 

The inverse t r ans fo rmat ion  is 

p 2 t a n h ( p 2  + q2) 
Te = (p2 + q2) 

q 2 t a n h ( p 2  + q2) 

~/8 = (p2 + q2) (A2) 

The resul ts  are compared in Table A1 wi th  the resul ts  of the one-stage method  
described in the text. The differences are probably not  significant.  

For  the analysis  of a da ta  set including both horizontal  components,  a 
s t ra tegy  similar  to t ha t  described above can be used to accommodate the 
covariance between orthogonal  components  recorded for the same ea r thquake  at  
the same site. 

In the two-stage method,  the difference is t h a t  the variance-covariance mat r ix  
of the observations in the first  stage is no longer diagonal,  so the ord inary  
least-squares  method  m a y  no longer be used. Since the components  of e I in 
equat ion (21) are normal ly  d is t r ibuted  wi th  zero mean  and variance-covariance 
mat r ix  of Vl, the  likelihood of the sample of observations is 

L 1 = (2,D")-N/2[Vll 1 / 2 e x p [ - l ( Y  1 - X l B 1 ) T v I - I ( Y ,  - X l n l )  ] (A3) 

TABLE A1 

COMPARISON OF RESULTS BETWEEN METHODS DESCRIBED IN THE 

TEXT AND IN APPENDIX A 

One-Stage One-Stage Two-Stage Two Stage 
Parameter* Appendix A Text Appendix A Text 

a 0.454 0.431 0.417 0.415 

b 0.256 0.277 0.289 0.290 
c - 0.00217 - 0.00231 -- 0.00255 - 0.00255 

h 7.08 6.65 7.34 7.31 

~o 0.188 0.214 
c~ 0.148 0.063 

5,. 0.239 0.231 0.223 0.223 

~e 0.085 0.124 0.203 0.201 

* P a r a m e t e r  v a l u e s  cor respond  to the  use  of l o g a r i t h m s  to the  

base  10 in  e q u a t i o n  (1). 
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(Searle, 1971, p. 87). For a given Vl, maximizing L 1 with respect to B 1 yields 

]~1 = ( x I T V 1  I X 1 ) - I x I T V I - I y 1  (A4) 

(Searle 1971, p. 87). We define a normalized matrix v 1 by the equation Cr2Vl = 
V1, where err 2 = ~2 + G 2, and we define % = ¢s2/G 2. The covariance of observa- 
tions at different sites is zero, the covariance of observations of different 
earthquakes at the same site is ~ 2 and the variance of an individual observa- 8 ' 
tion is ¢r 2. TO determine the matrices v 1 and v 1 1, we start  with the identity 
matrix for both. For the elements of v 1 corresponding to observations of differ- 
ent earthquakes at  the same site, we substitute %, and we calculate the 
corresponding changes in v1-1 with the Sherman-Morrison formula (Press 
et al., 1989, pp. 66-68). Substituting G 2 v I for V 1 in equation (A4) gives 

1 T 
]~1 = ( X 1 T v l - I X 1 )  X l  V I - I y 1  • (A5) 

Substi tuting G2Vl for V 1 in equation (A3) and taking the natural  logarithm 
gives 

N N 2 1 
in L 1 - -~-ln(2~r) -- ~ - l n ( %  ) -- ~lnlVll 

1 
2 (Y1 - X I B 1 ) T v l - I ( y 1  - X I B 1 ) / %  2" (A6) 

The likelihood L 1 must  be maximized over all ~s, B1,  h, and G 2. For fixed ,/~, 
L 1 can be maximized with respect to B 1 and h by iterating on equation (A5) 
until  IAh/h] is reduced below a specified limit, generally 10 -3. Since I~ 1 and h 
do not depend on G 2 for fixed %, we may then proceed to maximize L 1 with 
respect to ar 2 without recomputing I~ 1 or h. We differentiate equation (A6) with 
respect to G 2, set the result equal to zero, and solve for G 2. The solution is 

G 2 ( Y l  ^ T - 1 = --  X I B 1 )  Vl  ( Y 1 -  X I B 1 ) / N .  (A7) 

For each value of %, we compute values of I~1, h, ~r 2, and the likelihood L 1 
maximized with respect to l~l, h, and G 2. The final solution corresponds to the 
value of % for which the logarithm of the likelihood (equation A6) is maximum. 
The solution is found numerically by searching over Ts using the search routine 
GOLDEN given by Press et al. (1989, p. 282). 

The value of G obtained from equation (A7) is not unbiased. An unbiased 
estimate is given by 

G (Y1  ^ T ^2  = --  X I B 1 )  v I ( Y  1 - X I I ~ I ) / ( N -  Ne - 2), (A8) 

where N - N e - 2 is the number of degrees of freedom. This result is obtained 
by noting that,  for the final value of 3's, the determination of I~ 1 is a weighted 
least-squares problem with weighting matrix v -1. Draper and Smith (1981, pp. 
108-109) have shown tha t  such a problem is the equivalent of an ordinary 
least-squares problem in a transformed variable. Equation (A8) follows from 
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applying the usual rules (Searle, 1971, p. 93) to the equivalent ordinary least- 
squares problem. 

The second stage of the two-stage method is done in the same way as 
described in the text. The final results are compared in Table A1 with the 
results from the two-stage method described in the text. 

As with the one-stage method, the two-stage method can be modified to 
accommodate a data set including both horizontal components. 

APPENDIX B: ANALYTICAL DETERMINATION OF THE INVERSE AND THE 
DETERMINANT OF THE NORMALIZED VARIANCE-COVARIANCE MATRIX FOR 

THE ONE-STAGE METHOD 
Since the rank of the matrix v is equal to the total number  of recordings in 

the data set, it is advantageous to determine the inverse and determinant  
analytically. The inverse of v is given by 

I v, 1 0 .-. 0 ] 
-1 

V-1 ~- [ i V2O ""'" V -1NeO , (BI) 

as can be verified by carrying out multiplication by v. The diagonal elements of 
-1 V i are 

1 + ( R  i - 2)7 

1 - ( R  i - 1)72 + ( R  i - 2)7 '  
(B2) 

and the off-diagonal elements 

- T  

1 - ( R  i - 1)72 + ( R  i - 2 ) y '  
(B3) 

as can be verified by performing the multiplication ViVi -1. The determinant  Ivl 
is equal to the product IVlllV21... IVN.I. That  proposition follows directly from the 
definition of the determinant  '(e.g., Hildebrand, 1965, p. 10). Since the matrix v i 
depends on i only through its rank R i ,  we may change the notation to Vul. If 
R i = 1, IVRiJ = 1. If  R i = 2, IVRi[ = 1 - 72. In general, 

1 - ( R  i - 1)72 + ( R  i - 2)7 
IVRi] = ]VRi-ll 1 + ( R  i - 2)7 (B4) 

To obtain this result, we note that  a diagonal element of vi -1 , given by equation 
(B2), is also equal to 

IVR i - 1 ] 
IVRi I ' 

(B5) 

by the well-known equation (Hildebrand, 1965, pp. 16-17) giving the elements 
of an inverse matrix in terms of the cofactors of elements of the original matrix, 
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because IVRI_11 is the  cofactor of a diagonal  e lement  of V i. Equat ion  (B4) can be 
rewr i t t en  

IvR,I = IVR~_ll(1 - 3') 
1 +  ( R i -  1)3" 

1 +  (R  i - 2 ) 3 ' '  
(B6) 

which leads to 

and,  finally, 

Ri l + ( n - -  1)3' 
IVRi I = I ]  (1 -- 3') (B7)  

n=2 1 + (n  -- 2)3' 

Iv~J = (1 - 3")R~-1(1 + [ R  i - 113'). (B8) 

Searle (1971, p. 462) gives expressions for V 1 and  IV] t h a t  are equivalent  to our 
equat ions  (9), (B1), (B2), (B3), and  (B8). Searle 's expressions are used  by 
Abrahamson  and  Youngs (1992). The essent ial  difference in our approach is 
t ha t  we express th ings  in t e rms  of (r 2 and  3/ ins tead  of ~r 2 and  ~re 2 and,  as a 
result ,  need to do numer ica l  maximiza t ion  of the likelihood over only one 
variable % 
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