What single-corner-frequency (SCF) stress parameter is consistent with the Atkinson and Silva (2000) (AS00) source model?

Notes by David M. Boore

AS00 say 80 bars ("The equivalent point-source spectrum is characterized by a high-frequency level that corresponds to a Brune point source model with a stress drop of 80 bars"), but my runs suggest 88 bars. I used the stochastic model parameters used by AS00. I ran SCF models as well as my generalization of the two corner model (Boore, 2013; the results here are an example of the use of the generalized 2-corner model—I will eventually submit a paper for publication on the model with some illustrations of its use). Here is a sample paramet file, in this case for an additive generalized 2-corner model, with the dependence of  $f_a$  and  $\varepsilon$  on **M** being that used in AS00. The parameters below are for a stress parameter  $\Delta \sigma$  of 88 bars, but a whole suite of  $\Delta \sigma$  was used in the simulations. :

```
!Revision of program involving a change in the parameter file on this date:
   03/24/13
!Title:
  additive 2-corner_Raoof path
!rho, beta, prtitn, radpat, fs:
    2.8 3.5 0.707 0.55 2.0
!spectral shape: source number, pf_a, pd_a, pf_b, pd_b
! where source number means:
! 1 = 1-corner (S = 1/(1+(f/fc)**pf_a)**pd_a)
! 2 = Joyner (BSSA 74, 1167--1188)
! 3 = Atkinson (BSSA 83, 1778--1798; see also Atkinson & Boore, BSSA 85,
      17 - -30)
!
! 4 = Atkinson & Silva (BSSA 87, 97--113)
! 5 = Haddon 1996 (approximate spectra in Fig. 10 of
           Haddon's paper in BSSA 86, 1300--1313;
!
           see also Atkinson & Boore, BSSA 88, 917--934)
1
! 6 = AB98-California (Atkinson & Boore BSSA 88, 917--934)
! 7 = Boatwright & Choy (this is the functional form used by
                         Boore & Atkinson, BSSA 79, 1736--1761, p. 1761)
!
! 8 = Joyner (his ENA two-corner model, done for the SSHAC elicitation
1
      workshop)
! 9 = Atkinson & Silva (BSSA 90, 255--274)
! 10 = Atkinson (2005 model),
! 11 = Generalized multiplicative two-corner model
!
      (S = [1/(1+(f/fa)**pf_a)**pd_a]*[1/(1+(f/fb)**pf_b)**pd_b])
! 12 = Generalized additive two-corner model
1
       (S = (1-eps)/(1+(f/fa)**pf_a)**pd_a] + eps/(1+(f/fb)**pf_b)**pd_b)
          NOTE: if M<M for eps = 1.0, the program uses eps = 1, and the
!
source spectrum only depends
           on fb, which is equal to the corner frequency of the single-corner
!
source model.
```

One warning: the source duration is given by a weighted average of 1/fa and 1/fb, as ! specified below. For eps = 1.0 fa will be set equal to fc (the corner frequency for the single-corner frequency with the specified stress parameter). ! This will probably result in a a discontinuity in fa for eps = 1.0 and for eps slightly larger ! than 1.0. This may affect the computation of duration. Note that if the weights of 0.5 and 0.0for 1/fa and 1/fb used by Atkinson and Boore (1995) and Atkinson and Silva (2000) are specified, then the source duration for M smaller than the M for eps = 1.0will be 0.5/fa, whereas it more logically should be 1/fc = 1/fa. ! This is a general problem with the source duration of the two-corner model if the AB95 and AS00 ! weights are used. Because M for eps =1.0 is usually small, the inconsistency will probably ! only arise for small magnitudes, for which the source duration will be small compared to the path 1 duration. But the way to avoid an inconsistency in the source duration is to use ! weights of 0.5 and 0.5 for 1/fa and 1/fb, respectively. For large M, fb will usually be much larger than fa, and the ! source duration will be dominated by 0.5/fa. For this reason, I ! am revising my recommendations ! for the source duration weights below. ! pf\_a, pd\_a, pf\_b, pd\_a are used for source numbers 1, 11, and 12, usually ! subject to these constraints for an omega-squared spectrum: ! source 1: pf\_a\*pd\_a = 2 ! source 11: pf\_a\*pd\_a + pf\_b\*pd\_b = 2 ! source 12: pf\_a\*pd\_a = pf\_b\*pd\_b = 2 ! The usual single-corner frequency model uses ! pf\_a=2.0,pd\_a=1.0; the Butterworth filter shape is given by ! pf\_a=4.0,pd\_a=0.5. pf\_b and pd\_b are only used by sources 11 and 12, but dummy ! values must be included for all sources. 1 2.0 1.0 0.0 0.0 ! 12 2.0 1.0 2.0 1.0 !spectral scaling: ! stressc, dlsdm, fbdfa, amagc, c1\_fa, c2\_fa, amagc4fa, c1\_eps, c2\_eps, amagc4eps stress=stressc\*10.0\*\*(dlsdm\*(amag-amagc)) ! ! fbdfa, amagc for Joyner model, usually 4.0, 7.0) ! cl fa, c2 fa, amagc4fa: the coefficients relating log fa to M in sources 11 and 12, as given by the equation log fa =  $c1_fa + c2_fa^*(M-$ ! amagc4fa). cl\_eps, c2\_eps, amagc4eps: the coefficients relating log eps to M in ! ! source 12, as given by the equation log  $eps = c1_eps + c2_eps^*(M$ amagc4eps). ! fb for sources 11 and 12 are given such that the high-frequency spectral level equals that for a single corner frequency model with a stress parameter ! given by stress=stressc\*10.0\*\*(dlsdm\*(amag-amagc). ! See Tables 2 and 3 in Boore (2003) for various source descriptions ! ! (Note: the parameters in the line below are not used for most of the ! sources, for which the spectrum is determined by fixed relations between

corner frequency and seismic moment, but placeholders are still needed) ! ! For convenience for those using source 12, here are some of the coefficients for ! fa and eps from Table 3 in Boore (2003): Model cl fa c2 fa amagc4fa c1 eps c2 eps ! amagc4eps ! Atkinson and Boore (1995) M>=4.0 2.410 -0.533 0.0 2.520 - 0.6370.0 M< 4.0 2.678 -0.500 0.000 0.000 0.0 ! 0.0 ! Atkinson and Silva (2000) M>=2.4 2.181 -0.496 0.0 0.605 -0.255 0.0 M< 2.4 1.431 -0.500 -2.4 0.000 0.000 ! 0.0 88.0 0.0 4.0 7.0 2.181 -0.496 0.0 0.605 -0.255 0.0 !iflag\_f\_ff, c1, c2, c3 (0 0.0 0.0 if not used) If  $iflag_f_f = 1$ : ! modified distance: rmod = sqrt(r^2 + f\_ff^2)) ! If  $iflag_f_ff = 2$ : ! modified distance: rmod = r + f\_ff ! ! where log10(f ff) = c1 + c2\*amag! Use rmod in the calculations ! Published finite-fault factors meaning of r iflag\_f\_ff ! Author с1 c2 -0.05 0.15 ! Atkinson and Silva (2000) 1 r\_rup 2 ! Toro (2002) r\_rup -1.0506 0.2606 ! Atkinson and Boore (2003) r rup 1 -2.1403 0.507 1 - 0.05 0.150 0.0 0.0 1 !Geometrical spreading option: ! 0 = use standard hinged line segments ! >0 = frequency-dependent spreading: ! 1 = Gail Atkinson's November 2011 proposed spreading for eastern North America (ENA), with Q=500f^0.5, which must be specified below). I. 2 = Dave Boore's trial spreading #1 for ENA). ! 3 = Gail Atkinson's Sept, 2012 report "nga-e-r12 AttenShape.pdf". For this ! model,  $Q = 680f^{0.33}$ , and this must be specified below. ! 0 !Parameters for the DMB gsprd: r1\_dmb\_gsprd, pgsprd\_r\_le\_r1\_lf, pgsprd\_r\_le\_r1\_hf, pgsprd\_r\_gt\_r1, ! ft1\_dmb\_gsprd, ft2\_dmb\_gsprd ! ! (Placeholders are needed, but not used, even if the geometrical spreading option ! is not for Dave Boore's spreading function 60.0 -1.1 -1.3 -0.5 1.0 3.2 ! this corresponds to 1/r^1.1 for f<=1 Hz and  $1/r^1.3$  for f>=3.2 Hz, for r< 60 km and  $1/r^0.5$  for all f beyond 60 km. !gsprd: r\_ref, nsegs, (rlow(i), a\_s, b\_s, m\_s(i)) (Usually set ! r\_ref = 1.0 km) ! \*\*\* NOTE: these lines are needed even if option 1 is chosen above---and ! there must be nsegs lines following the "nseg" specification, even if the ! geometrical spreading is not used because option 1 has been chosen. 1.0 2 1.0 -1.0 0.0 6.5 40.0 -0.5 0.0 6.5

*C*:\durations\_for\_smsim\notes\_and\_reports\What\_SCF\_stress\_param\_is\_consistent\_with\_the\_A S00\_source\_model.doc

!q: fr1, Qr1, s1, ft1, ft2, fr2, qr2, s2, c\_q 1.0 180 0.45 1.0 1.0 1.0 180 0.45 3.5 !source duration: weights of 1/fa, 1/fb ! Previous to 03/25/13, I recommended that the weights for source 1 be 1.0 0.0, and ! for the Atkinson and colleagues 2-corner sources be 0.5 0.0. But since dursource is always computed as w\_fa/fa + w\_fb/fb, and because ! fb is set equal to fa for source 1, even though fb is not used in spect\_shape, using weights of 0.5 and 0.5 ! for source 1 will give the same answer as the previously recommended 1.0 0.0 weights. The advantage ! to using weights of 0.5 0.5 is that they are the same as I am now recommending for the Atkinson and colleagues (and perhaps ! all) 2-corner models, for reasons discussed in the spectral shape, source 12 ! section above. This is not what is used by Atkinson and colleagues; they use 0.5 0.0 for the weights ! (Atkinson and Boore (1995, p. 20) and Atkinson and Silva (2000, p. 259)). 0.5 0.5 !path duration: nknots, (rdur(i), dur(i), slope of last segment) 1 0.0 0.0 0.05 !crustal amplification, from the source to the site (note that this can include ! local site amplification): namps, (famp(i), amp(i)) 11 0.01 1.00 0.09 1.10 0.16 1.18 0.51 1.42 0.84 1.58 1.74 1.25 2.26 2.06 2.25 3.17 2.58 6.05 16.6 3.13 61.2 4.00 !site diminution parameters: fmax, kappa, dkappadmag, amagkref ! (NOTE: fmax=0.0 or kappa=0.0 => fmax or kappa are not used. I included this ! to prevent the inadvertent use of both fmax and kappa to control the diminution ! of high-frequency motion (it would be very unusual to use both parameters ! together. Also note that if do not want to use kappa, dkappadmag must also ! be set to 0.0). 0.0 0.04 0.0 6.0 !low-cut filter parameters: fcut, nslope (=4, 8, 12, etc) 0.04 8 !rv params: zup, eps\_int (int acc), amp\_cutoff (for fup), osc\_crrctn(0=no correction; ! 1=bj84;2=lp99; 3=bt12 wna; 4=bt12 ena; 5=average of bt12 ena & wna) 10.0 0.00001 0.001 3 !Name of pars file for Boore-Thompson oscillator correction for WNA: ! NOTE: If no folder is specified, the program will look for the files in

```
! the folder from which the driver is called)
        \smsim\wna_bt12_trms4osc.pars
!Name of pars file for Boore-Thompson oscillator correction for ENA:
! NOTE: If no folder is specified, the program will look for the files in
! the folder from which the driver is called)
        \smsim\ena_bt12_trms4osc.pars
!window params: idxwnd(0=box,1=exp), tapr(<1), eps_w, eta_w, f_tb2te,
f_te_xtnd
        1 0.05 0.2 0.05 2.0 1.0
!timing stuff: dur_fctr, dt, tshift, seed, nsims, iran_type
(0=normal;1=uniform)
        1.3 0.005 20.0 123.0 100 0</pre>
```

```
Here are figures:
```



Figure 1. Comparison of FAS from AS00 with SCF and generalized 2-corner models for a suite of stress parameters.



Figure 2. Expanded view of the comparison of FAS.

Both the SCF and the additive generalized (source 12) models with  $\Delta\sigma$  of 88 bars are more consistent with the Fourier acceleration spectrum (FAS) from the AS00 model (source 9) than are the FAS for models with 80 bars.

## References

Atkinson, G.M. and W. Silva (2000). Stochastic modeling of California ground motions, *Bull. Seismol. Soc. Am.* **90**, 255–274.

Boore, D.M. (2013). Generalization of 2-corner frequency source models used in SMSIM, unpublished notes, available from www.daveboore.com\daves\_notes\smsim\_generalization\_of\_2-corner\_frequency\_source\_models\_v04.pdf