Comparisons of Darfield and Christchurch Ground Motions with NGA-W1 GMPEs

David M. Boore

Workshop on Update of Pacific Northwest Portion of the U.S. National Seismic Hazard Maps (NSHMs)

March 21-22, University of Washington, Seattle

(http://www.geonet.org.nz/canterbury-quakes/)

Stations for which Rjb<= 200 km

Most class C sites to the north

- Many sites with Vs30 = 275 and 660 m/s because values were estimated, not measured
- Distributions of Vs30 similar for both events
- Most records with R<100 km are from class D sites

Note: Some sites classified as "E" by Bradley & Cuprinovski (2011)

Comparison of Darfield and Christchurch Ground Motions

- Motions from both events at close distances are comparable
- Apparently no or small site effect (but note difference in spatial locations for different class sites, so source effects could compensate for site effects)
- Nonlinear soil response could have reduced motions for the larger event

Observed RotD50 reduced to GMRotI50 using factors from Boore (2010); maximum effect is 4% at T=5 s.

In this and subsequent comparisons, the Y-axis spans three orders of magnitude.

Concentrate on H components, as the 2008 NGA GMPEs were only for H.

- Christchurch (M 6.1) class D motions comparable or even larger than Darfield (M 7.0) at close distances
- Darfield class C motions greater than Christchurch motions (R>50 km)

- Christchurch (M 6.1) class D motions now smaller than Darfield (M 7.0) at all distances
- Apparent site effect small or not existent

Comparison of Observed Motions and Motions from NGA-W1 GMPEs: Darfield

- Reddish GMPEs for class D
- Bluish GMPEs for class C
- Don't try to follow curves for individual GMPEs
- Overall comparison good
- Apparent lack of site effect in data is consistent with GMPEs

- Note separation in observed class D values; GMPEs predictions between the two groups
- Site effect in GMPEs, but not apparent in observations (but little overlap in distance range for class C and D)

- GMPEs underpredict observations (except class C at greater distances)
- Site effect in GMPEs, but not apparent in observations (but little overlap in distance range for class C and D)

Comparison of Observed Motions and Motions from NGA-W1 GMPEs: Christchurch

- Overall comparison good
- Apparent lack of site effect in data is consistent with GMPEs

- GMPEs tend to underpredict class D
 motions at close distances
- Site effect in GMPEs, but not apparent in observations (but little overlap in distance range for class C and D)

- GMPEs severely underpredict observations at shorter distances
- Agreement better for greater distances
- Site effect in GMPEs, but not apparent in observations (but little overlap in distance range for class C and D)

Sensitivity of Predicted T=5 s PSA to sediment depth and to magnitude

- Show AS08 and class D only
- Z_{1.0}=1000 m from Bradley & Cuprinovski (2011)
- **M** 6.33 from Holden (2011)
- Use of these data in NGA-W2 without Z_{1.0} and larger M could result in biased results.
- Does Z_{1.0} vary spatially, with it being smaller for stations at greater distances? If so, this would help explain the discrepancy at greater distance. This could also be due to a difference in geometrical spreading due to lateral changes in crustal structure.

Vertical Motion

(Fry et al., 2011)

(Bradley & Cuprinovski, 2011)

Effects Producing Spatial Variability in Ground Motions

- •Source: Radiation Pattern & Directivity
- •Path: volcanic vs sediments
- •Basin Waves
- •Sediment Depth
- •Shallow Site Response
 - •Linear
 - •Nonlinear

Fault Normal and Fault Parallel Velocity Time Seri

(from B. Chiou)

Evidence for Nonlinear Soil Response

Time (s)

Time (s)

Negative vertical accelerations are "clipped". This may be due to a different nonlinear process than that producing the cusps shown in the previous figures.

Conclusions

- M 7.0 Darfield and M 6.1 Christchurch motions similar for close distances, short periods
- M 7.0 Darfield motions higher than M 6.1 Christchurch motions for longer periods (as expected from the difference in magnitudes)
- Site response not too obvious, but this may be because of the different spatial distributions of the site classes (most close sites are class D)
- Observed motions influenced by many effects, including
 - Lateral changes in geology
 - Local linear and nonlinear site response
 - Basin waves (?)
- GMPEs are in reasonable agreement with observations for close distances, short periods
- GMPEs underpredict longer period motions, using metadata in current NGA-W2 flatfile

END

From B. Chiou, Source: GNS Science

(Bradley & Cuprinovski, 2011)

(Bradley & Cuprinovski, 2011)

Directivity Effect and Velocity Pulse

(from B. Chiou)

(Bradley & Cuprinovski, 2011)

(Bradley & Cuprinovski, 2011)

0282 Christchurch, New Zealand

(from B. Chiou)

Fault Rupture

- Reverse faulting on a buried fault
- Assumed fault plane
 - Strike = 68° (from USGS CMT)
 - 65 $^{\circ}$ dip, to the south
 - Top of rupture is at 2 km depth (assumed)
 - Bottom of rupture is at 12 km (assumed)
 - Rupture length ~ 15 km (length of the aftershock zone).

(Bradley & Cuprinovski, 2011)

Observed RotD50 reduced to GMRotI50 using factors from Boore (2010); maximum effect is 4% at T=5 s.

In this and subsequent comparisons, the Yaxis spans three orders of magnitude.

Concentrate oh H components, as the 2008 NGA GMPEs were only for H.

Date: 2012-03-2 (shop_21-22mar12)christchurch_psa_t2.0_obs_nga_r_le_200.gmpes_blue_red.draw;

Date: 2012-03-21; orkshop_21-22mar12\christchurch_pgv_obs_nga_r_le_200.gmpes_blue_red.draw;

(Fry et al., 2011)