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ABSTRACT 

Pseudo-spectral acceleration (PSA) is the most commonly used intensity measure in earthquake 
engineering as it serves as a simple approximate predictor of structural response for many types 
of systems. Therefore, most ground-motion models (GMMs, aka GMPEs) provide median and 
standard deviation PSA using a suite of input parameters characterizing the source, path, and site 
effects. Unfortunately, PSA is a complex metric: the PSA for a single oscillator frequency 
depends on the Fourier amplitudes across a range of frequencies. The Fourier amplitude 
spectrum (FAS) is an appealing alternative because its simple linear superposition allows effects 
to be modeled as transfer functions. For this reason, most seismological models, i.e., the source 
spectrum, are developed for the FAS. Using FAS in conjunction with random-vibration theory 
(RVT) allows GMM developers to superimpose seismological models directly, computing PSA 
only at the end of the process. The FAS-RVT-PSA approach was first used by the Hollenback et 
al. team in their development of GMMs for the Next Generation Attenuation Relationships for 
Central & Eastern North-America (NGA-East) project (see Chapter 11 of PEER Report No. 
2015/04). As part of the NGA-East project to support the Hollenback et al. team and similar 
efforts, the current report summarizes a systematic processing algorithm for FAS that minimizes 
computational requirements and bias that results from the RVT approximation for median GMM 
development. 
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1 Introduction 

Random-vibration theory (RVT) is a method to statistically represent earthquake ground motions 
that allows for the calculation of the expected time-domain peak value with one calculation. It 
has been used by seismologists and engineers for decades for a wide range of applications (e.g., 
Hanks and McGuire [1981], Boore and Joyner [1984], Campbell [2003], and Rathje et al. 
[2005]). In the context of quantifying ground motions, RVT is used to compute pseudo-spectral 
acceleration (PSA), starting from a statistical representation of the Fourier amplitude spectrum 
(FAS) and an associated measure of duration. Pseudo-spectral acceleration is the most 
commonly used metric in earthquake engineering. Because it is a simple predictor of structural 
response for many types of systems, ground motion models (GMMs) have been developed for 
PSA; however, PSA is a highly nonlinear metric. It depends on various bandwidths captured by 
different single-degree-of-freedom (SDOF) systems, which makes it difficult to translate 
seismological effects directly to PSA. Thus, most seismological models have been developed for 
FAS, one of the fundamental building blocks of the frequency domain representation of ground 
motions. Using FAS in conjunction with the RVT process allows GMM developers to 
superimpose various seismological models directly and computes PSA only at the end of the 
process. Although this process cannot account for all the time-dependent effects of recorded 
ground motions, it presents the advantage of relative simplicity for integrating complex 
seismological models into median PSA computations. 

The RVT approach was considered for the development of GMMs for the Next 
Generation Attenuation Relationships for Central & Eastern North-America (NGA-East) project. 
This report provides an overview of the basic concepts of the RVT method, discusses previously 
proposed methods, and summarizes methodologies adopted for use by the NGA-East project. 

1.1 MOTIVATION AND CONSTRAINTS 

Traditional GMMs are used to compute the expected PSA—as well as other intensity measures 
(IMs)—for a given scenario event (defined by an earthquake magnitude and sourcesite distance 
measures). The response spectrum was selected as the IM of choice because it is generally a 
good predictor of the dynamic response of a wide range of structures. Each frequency of the 
response spectrum corresponds to the peak time-domain response of a SDOF system with a 
specific natural period and damping. The SDOF response depends on the frequency content and 
timing (or phasing) characteristics of the ground motions. The response is largely controlled by 
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amplitudes in the frequency range near to and lower than the natural frequency of the SDOF 
system. Thus, for a high-frequency system, the oscillator response is dependent on nearly all of 
the frequency content of the ground motion. As a result, changes in the ground-motion response 
spectrum are dependent on the frequency content of the input motion (i.e., spectral shape). 
Spectral shape refers to the trace of any amplitude metric as a function of frequency. This report 
applies this concept of spectral shape to both PSA and FAS. The dependence on spectral shape 
on the oscillator response complicates the development and functional form of GMMs. 

The FAS has one main advantage over the PSA spectrum: the amplitude at each 
frequency is independent of the amplitudes of adjacent frequencies. The same site amplification, 
distance attenuation, site attenuation, etc., is applicable to any motion regardless of the spectral 
shape. The primary disadvantage of the FAS is that it is not a useful IM for engineering design. 
The RVT solves this problem by providing a method to compute the expected peak response in 
the time domain (e.g., PGA, PGV, etc.). By coupling RVT with the SDOF transfer function, it 
becomes possible to calculate the expected acceleration response spectrum that corresponds to 
the FAS. The GMM development can therefore be completed in FAS space—where many 
processes are linear—with the PSA computed using RVT theory models. 

The RVT relies on extreme value statistics, which describe the distribution of peak values 
of the underlying time-varying seismogram. Because of complexities inherent in a seismogram, 
there is no exact solution. Instead, there are a number of proposed solutions, each with their own 
advantages and disadvantages. The NGA-East project required that the RVT procedure provides 
accurate results over the widest frequency range possible. The NGA-East GMMs were 
developed for reference-rock site conditions that were paired with site-amplification models to 
address site response. To maintain consistency between the GMM and site-amplification model 
development, the selected RVT approach should also be applicable to site response analyses. 

This report is structured as follows: (1) it presents an overview of the RVT approach; (2) 
discusses the selection of peak factors to use for the GMM development application; (3) 
introduces a down-sampled orientation-independent FAS referred to as the effective amplitude 
spectrum (EAS); and (4) discusses alternative duration models that are consistent with the RVT 
process. The down-sampled smoothed EAS was applied and included as data products for the 
NGA-East, NGA-West2, and NGA-Sub databases. 
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2 Random-Vibration Theory: Fundamentals 

In practice, RVT can be separated into a theoretical framework that relates the frequency content 
and duration of the motion to the distribution of peak time-domain response; empirical 
corrections are used to improve the accuracy of RVT where assumptions begin to limit the 
methodology. This chapter discusses the methodology used to characterize the ground motion 
and calculate the peak-time response. 

2.1 CHARACTERIZATION OF RANDOM-VIBRATION THEORY GROUND 
MOTION 

In RVT, the ground motion is characterized the power spectral density (PSD). For time varying 
signal x(t), the PSD ( )f  can be computed by: 

    2
PSD f X f D     (2.1) 

where  X f  is the FAS, and D is the ground-motion duration (see Section 2.3). Seismology has 

typically separated the frequency content [i.e.,  X f ] and the duration instead of being 

combined into the PSD. If an RVT motion is defined as the average of a set of time series, then 
the FAS should correspond to the mean power, which is computed by the mean value of the 
squared Fourier amplitudes [Boore 2003]. 

The frequency content may be indirectly specified by a response spectrum from which a 
compatible FAS is developed. While specifying the ground motion in this manner is 
advantageous due to the general familiarity with the response spectrum, there are challenges 
associated with ground-motion saturation of the SDOF transfer function. The details of this 
process of developing a compatible FAS from a target response spectrum is not discussed herein; 
more information can be found in Vanmarcke [1976], Der Kiureghian [1980], and Rathje et al. 
[2005]. 

2.2 CALCULATING THE PEAK RESPONSE 

The peak factor (PF) relates the root-mean-squared response to the peak response. The following 
assumptions of the ground are required for the development of the PF formulations: 
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 They can be represented by a band-limited white Gaussian noise 
(amplitudes have random phases) with zero mean. 

 It is a stationary stochastic process with no change in the probability 
distribution over the duration interval. 

The ramifications of these proposed assumptions are discussed in Chapter 3. 

Consider a time-varying signal  x t  with its associated FAS  X f : the root mean square 

(rms) value of the signal  rmsx  is a measure of the average value over a given time interval, 

Drms, and is computed from the integral of the time series over that time interval by: 

 
rms

2

rms
rms 0

1
D

x x t dt
D

     (2.2) 

Parseval’s theorem relates the integral of a time series to the integral of its Fourier transform 
such that Equation (2.2) can be re-written in terms of the FAS of the signal: 

  2 0
rms

rms rms0

2 m
x X f d f

D T



   (2.3) 

where m0 is defined as the zeroth moment of the FAS. The nth moment of the FAS is defined as: 

    2

0

2 2
n

nm f X f d f


   (2.4) 

and is used characterize the frequency content of the ground motion. The spectral motions are 
used to define the frequency of zero crossings  zf  by: 

2

0

1
z

m
f

m
  (2.5) 

and the number of zero crossings  zN  by: 

2
gm gm

0

1
z z

m
N f D D

m
     (2.6) 

where Dgm is the duration of the ground motion; this is discussed in more detail in Section 2.3. 
Similarly, the frequency  ef  and number  eN  of extrema can be computed by: 

4

2

1
e

m
f

m
  (2.7) 

4
gm gm

2

1
e e

m
N f D D

m
     (2.8) 
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2.2.1 Peak Factor Formulations 

2.2.1.1 Cartwright and Longuet-Higgins [1956] 

Cartwright and Longuet-Higgins [1956] (abbreviated as CLH56) studied ocean waves and 
developed functions to predict peak wave height based on characteristics of the wave train. 
Boore [1983; 2003] modified the PF equation by changing the variables to remove an integrable 
singularity. The resulting PF equation is: 

  max 2

min 0

PF 2 1 1 exp
eNx

z d z
x




        (2.9) 

where ε is defined as ratio of number of zero crossings  zN  to the number of extrema  eN : 

 2
2

0 4

z

e

mN

N m m
  


 (2.10) 

The number of zero crossings and extrema are defined in Equations (2.6) and (2.8). 

Equation (2.9) assumes a Poisson process in which each peak is statistically independent. 
For narrow-band motions (ε = 1), the distribution of peaks follow a Rayleigh distribution. For 
broadband motions (ε = 0), the distribution of peaks follow a Gaussian distribution. 

2.2.1.2 Davenport [1964] 

Davenport [1964] (abbreviated as D64) simplified Equation (2.9) to the following asymptotic 
form: 

 
 

max

min

0.5772
PF 2ln

2ln
z

z

x
N

x N
    (2.11) 

which results in faster calculations but at the cost of decreased accuracy; see Section 2.2.2. Note: 
this approximation does not work if zN  is less or equal to 1. 

2.2.1.3 Vanmarcke [1975] 

Vanmarcke [1975] (abbreviated as V75) extended the previous PF formulations to include the 
potential for clustering of peak values in the time domain. This formulation no longer assumes a 
Poisson process with statistically independent peaks. The cumulative distribution of the peak 
values from Equation (29) of Vanmarcke [1975] is as follows: 

 
2

2

1 exp

1 exp exp
2

1 exp
2

z e

x

N x
xx

F x
x

 
   

      
                        

 (2.12) 
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where e  is an empirically defined factor defined as: 

1 b
e     (2.13) 

where δ another measure of bandwidth defined by: 

2
1

0 2

( )
1

m

m m
  


 (2.14) 

and the value of b was tentatively estimated to be 0.20 based on fitting to numerical simulations. 
Equation (2.12) does not provide for direct calculation of the expected PF. Instead, it is possible 
to calculate the expected PF through first computing the analytical or numerical derivative of 
Equation (2.12) prior to computing the expected value of the probability density function, 
[ ( )],xf x  which is defined as: 

0

[ ] ( )xE x x f x d x


   (2.15) 

However, because xF  is continuous and only non-negative, the expected value may be computed 
directly from xF  by1,2: 

 
0

[ ] 1 xE x F x d x


     (2.16) 

The PF is then computed by substituting Equation (2.12) into Equation (2.16). 

2.2.1.4 Der Kiureghian [1980] 

Der Kiureghian [1980] (abbreviated as DK80) assessed the Davenport [1964] PF formulation 
and identified that the Poisson model of crossings tends to overestimate the mean and 
underestimate the variance of the peak. Der Kiureghian [1980] modified the Davenport [1964] 
asymptotic equation based on empirical data, and defined the PF as: 

*max

*
rms

0.5772
PF 2ln( )

2 ln( )
z

z

x
N

x N
    (2.17) 

Where *
zN  is an equivalent-statistically-independent number of zero crossings and defined as 

 
 * 0.45

max 2.1, 0.00 0.10

1.63 0.38 0.10 0.69

0.69 1.00

z

z z

z

N

N N

N


 



  


    
  

 (2.18) 

and δ is a measure of bandwidth defined by Equation (2.14). 

                                                 
1 http://en.wikipedia.org/wiki/Expected_value#Formulas_for_special_cases 
2 http://stats.stackexchange.com/a/13377/48461 
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2.2.1.5 Toro and McGuire [1987] 

Toro and McGuire [1987] (abbreviated as TM87) adopted the functional form of Equation (2.11) 
proposed by Davenport [1964] with two modifications. The first modification introduced the 
non-stationarity factor (nf)—discussed in Section 3.2—to address the fact that the oscillator does 
not reach steady-state conditions during the interval [0, Tgm]. The second modification addressed 
the correlation in peaks ignored by the Poisson process assumption and is based on equivalent-
statistically-independent number of zero crossings [Der Kiureghian 1980]: 

 * 0.45max 1.33, 1.63 0.38    z zN N  (2.19) 

The PF is defined as: 

 
 

max *

*

0.5772
PF 2ln

2ln

 
   
 
 

f z
rms z

x
n N

x N
 (2.20) 

2.3 DISCUSSION 

To illustrate the differences in the PF formulations, three different events were considered: 
moment magnitude M 3.5 at 5 km, M 5.5 at 20 km, and M 7.5 at 100 km. Using a point-source 
source model and Central and Eastern North America (CENA) parameters from Campbell 
[2003], the associated FAS were computed and are shown in Figure 2.1; SDOF transfer functions 
with an oscillator natural frequency (fn) of 0.1, 3.0, and 100 Hz and a damping of 5% were 
applied to the FAS. The resulting FAS for the three events are shown in Figures 2.2, 2.3, and 2.4. 
Considering the range of oscillator frequencies, the bandwidth parameters ε and δ are computed 
using Equations (2.10) and (2.14), respectively. The variation of ε and δ with oscillator 
frequency is shown in Figures 2.5 and 2.6, respectively. Narrow-band motions were 
characterized by ε values close to 1 or δ values close to 0. 
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The PF formulations presented in the previous section can be separated into two 
categories: (1) those based on Cartwright and Longuet-Higgins [1956]; and (2) those based on 
Vanmarcke [1975]. The Cartwright and Longuet-Higgins [1956] formulation factor assumes 
statistical independence between the local peaks of a random process, which is a significant 
approximation for a narrow-band process [Der Kiureghian 1980]. 

To illustrate the differences between the PF formulations, the PFs were computed for the 
three scenarios using four different PF formulations: CLH56, D64, V75, and DK85. For these 
calculations, the Nz was limited to be greater than 1.33. The computed PFs are shown in Figures 
2.7, 2.8, and 2.9. The differences between each of the formulations vary with respect to input 
motion and oscillator frequency. For the M 5.5 and 7.5 events (Figures 2.8 and 2.9), the 
considered PFs are clustered with the CLH56 and D64, and demonstrate relatively consistent 
behavior. Similarly, the V75 and DK85 provide similar estimates of the PF. These results are not 
unexpected as the two groups of PFs are based on differing assumptions. For the M 3.5 event 
(Figure 2.7), there are significant differences between the CLH56 and D64 due to the limited 
range over which the asymptotic approximation is accurate. The limit of Nz ≥ 1.33 also limits the 
DK85 PF to be greater than 1.51 for frequencies less than 10 Hz. 

The differences between the CLH56 and D64, and V75 and DK85 PF formulations 
suggest that both PF formulations should be considered. While the CLH56 is based on a simpler 
statistically model (i.e., Poisson process), this methodology is used by SMSIM [Boore 2003], 
which has been used extensively within the seismology community. The deficiency of assumed 
statistical independence was addressed first by Boore and Joyner [1984] and has been revisited 
by subsequent work through modifications of the duration; see Chapter 3. Although the 
recommended modifications to the ground motion improve the agreement between time series 
and RVT response spectra, they fail to address the underlying statistical assumptions. These 
assumptions may lead to inaccurate results with RVT when it is extended beyond calculation of 
response spectra. Kottke and Rathje [2013] compared time series and RVT seismic site response 
analyses, and showed significant differences between the results, which in part was due to 
differences in duration. Ongoing work by Rathje [Personal Communication 2014] has shown 
that using the Vanmarcke [1975] PF formulation reduces these differences. 

Both the Cartwright and Longuet-Higgins [1956] and Vanmarcke [1975] PF formulations 
are recommended for use by this project. The complete form of the Vanmarcke [1975] 
formulation is recommended because asymptotic formulations, such as Der Kiureghian [1980], 
are not accurate over the range of bandwidths considered by this project. 
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where af  is the lower of the two corner frequencies (e.g., Atkinson and Boore [1995] and 

Atkinson and Silva [2000]). Boore et al. [2014], however, have suggested that the duration 
should be modeled as a combination of the two corner frequencies, i.e., 

0.5 0.5
S

a b

D
f f

   (2.23) 

As formulated by Hanks and McGuire [1981] and Boore [1983], the ground-motion duration 
only included DS. Thus, for a given magnitude, DT was the same at all distances. Herrmann 
[1985] noted that this formulation should be limited to short distances because the duration of 
real ground motions increases with distance. Herrmann [1985] computed synthetic records with a 
one-dimensional velocity model to illustrate this trend, noting that the ground motion at short 
distances is simple and pulse-like, while at larger distances surface waves and crustal reflections 
arrive after the direct S-wave, increasing the duration of shaking. Herrmann [1985] proposed that 
the path duration could be modeled as: 

0.05PD R  (2.24) 

where R is the hypocentral distance. 

For an assumed source model, the DP can be computed empirically by subtracting the DS 
from DT, which is typically a function of distance (e.g., Boore [2003]). As discussed below, there 
are different ways to compute DT from ground-motion records. The following subsections 
discuss the different parameterizations of DT as well as recently developed models for DP. 

2.4.2 Significant Durations 

For many ground-motion applications, the significant duration, bracketed duration, and uniform 
duration are often used to characterize the duration of ground-motion shaking. Herein, only the 
significant duration as introduced by Trifunac and Brady [1975] will be discussed. It is based on 
the normalized integral of the squared acceleration (i.e., the Husid curve) and is closely 
associated with the “rms” acceleration. 

The Arias intensity at time [ ( )]at I t  is computed by: 

2

0

( ) ( )
2

t

aI t x t dt
g


   (2.25) 

where ( )x t  is the acceleration at time t in units of gravity (g). The Husid curve [ ( )]h t  is defined 

as: 
( )

( )
( )

a

a

I t
h t

I



 (2.26) 

and varies from zero at the start of a record to one at the end of a record. The significant duration 
D is defined as the difference in the times at which ( )h t  for two different percentages of its final 
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number of periods [Bora et al. 2014]. This last definition of duration could be interpreted as the 
most relevant for RVT applications and is discussed in Section 2.3.3. 

The stochastic method of ground-motion simulation, as developed by Boore [1983], used 
D5–95 as the total duration of ground shaking and a separate duration to compute peak values (i.e., 
spectral accelerations), which is a function of the oscillator period. Thus, significant duration 
may still be preferred as the parameterization for ground-motion duration for use within the 
Boore [1983] framework for a number of reasons: (1) the duration of ground-motion excitation is 
conceptually distinct from the duration of a responding oscillator (as in Boore and Thompson 
[2012, 2015]); (2) it provides consistency and continuity with the Boore formulation [1983; 
2003]; (3) the widespread use and availability of D5–95; and (4) the ambiguity as to which IM to 
use for IM-compatible durations. 

2.4.2.1 Ou and Hermann [1990] 

A fundamental assumption underlying RVT is that the signal is stationary; see Section 2.3.3. 
Given that, Ou and Herrmann [1990] argued that the duration window should be chosen such 
that a stationary process can approximate the signal. Their criteria for determining that a time 
window is near-stationary is that the Husid plot increases approximately linearly throughout that 
time window. They analyzed records from the Eastern Canada Telemetered Network with 
epicentral distances ranging from 135–994 km and concluded that the D5–75 window is 
approximately stationary. They validate the use of this window with RVT by comparing the 
measured peaks to the peaks predicted by RVT, noting that the spectrum should be estimated 
only from the signal within the D5–75 time window when D75 durations are used in the RVT 
calculations. 

2.4.2.2 Boore and Thompson [2014] 

Boore and Thompson [2014] addressed the non-stationarity of ground motions using a different 
approach. This approach was developed by Boore and Joyner [1984] whereby the duration of the 
ground motion is treated independently from the non-stationarity correction. A different duration 
(termed Drms and discussed in detail later) is used to compute the peak values from the “rms” 
acceleration, which is a function of oscillator period and accounts for the non-stationarity of the 
signal. Thus, Boore and Thompson [2014] developed a new parameterization of duration that 
was guided by two primary factors: (1) the use of D5–95 was preferred for consistency’s sake, in 
particular for defining the Saragoni and Hart [1974] exponential shaping window in the time 
domain; and (2) the influence of strong P-wave energy and late-arriving surface wave energy 
should be minimized because the stochastic method is founded upon seismological consideration 
of S-waves. 

The problem of early P-wave energy is illustrated in Figure 2.10. The Husid plot of the 
recording is given in the top panel, and the record (second to the top panel) is compared to 
stochastic simulations where all parameters are held constant except for DT. The arrival times of 
the P- and S-waves are labeled on each plot, and the simulations are aligned to coincide with the 
S-wave arrival. The DT and the median PGA from 800 simulations ( PGA ) are given for each 
simulation. 
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The main purpose of Figure 2.10 is to demonstrate that the 5% level for data is reached 
substantially earlier than the S-wave arrival in some cases. That said, parts (c), (d), and (e) of the 
figure also demonstrate the consequences of the different durations for simulated ground 
motions. Figure 2.10(c) shows that the DP = 0.05R duration is too short, whereas Figure 2.10(d) 
shows that using D5–95 from the recorded time series overestimates the path duration because of 
the presence of strong P-wave energy. Figure 2.10(e) shows the duration parameter developed by 
Boore and Thompson [2014] (defined below as 95D ). Note that the simulations can be compared 

in terms of the total duration but also in terms of their respective PGA : the larger the DT, the 
smaller the amplitude (by approximately the inverse of the square root of DT) because the energy 
is spread across a larger time window. The median PGA (indicated by PGA ) for the 800 
simulations is given in the legends; as expected, the ratios of any two simulations are close to the 
square-root of the ratio of their durations. 

The early start to the duration measure illustrated in Figure 2.10 is incompatible with the 
assumption that simulations are for the S-wave contribution to the ground motion. Similar 
problems can occur due to a delay of the time at which the 95% level is reached. These effects 
imply that the shape of the envelope of ground motion from data may be inconsistent with that 
assumed in the simulations. To avoid the instability due to the early and late times at which the 
5% and 95% levels are reached, respectively, Boore and Thompson [2014] proposed an effective 
duration 5 95D  : 

5 95 80 202.0( )D D D    (2.27) 

The scale factor of 2.0 is based on the average of the ratio of 5 95D   to 80 20( )D D  from the 

simulations. 

Boore and Thompson [2014] computed path durations from the NGA-West1 (for active 
crustal regions [ACRs]) database as 95P SD D D  , and fit a piecewise linear function to the data. 

Boore and Thompson [2015] performed a similar analysis of the NGA-East database (for stable 
continental regions [SCRs]). The difference in pD  for ACRs and SCRs is shown in Figure 2.11, 

which plots pD  as a function of distance RPS (which is the adjusted point-source distance to 

account for finite-fault effects). Figure 2.11 shows the Boore and Thompson [2015] function and 
median values for SCRs and the Boore and Thompson [2014] function and median data values 
for ACRs; path durations for individual records for SCR M 45 data are included to illustrate the 
scatter in the data. In addition, the path duration used in a number of simulations of Eastern 
North America (ENA) ground motions (e.g., Atkinson and Boore, [1995; 2006]) is also shown. 
The longer durations for SCRs compared to ACRs might be the result of the smaller intrinsic 
attenuation in the cooler crust, which allows the scattered waves to prolong the duration of 
shaking. 
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both in the PF, pf, and in the “rms” motion, yrms. Traditionally, different measures of duration 
based on different criteria (e.g., cumulative energy and bracketed ) have been proposed. Based 
on the application, a suitable duration is selected; however, for RVT it is not entirely clear which 
duration measure should be used in calculation of response spectra. 

Recently, Bora et al. [2014] proposed a duration that is rooted in the RVT framework. It 
is different from other duration measures: (1) it is not based on an acceleration time series; and 
(2) it is not a “duration” in a physical sense but a parameter suitable to calculate response spectra 
using RVT. The duration proposed in Bora et al. [2014] is defined as the duration that minimizes 
the misfit between the observed response spectrum and the one calculated from the observed 
FAS and RVT. Thus, in an application that aims to predict response spectra, this duration 
measure is ideally suited for the RVT framework. Basically, the duration is treated as a 
parameter that is inverted for using RVT as the model and the response spectrum and the FAS as 
data. Therefore, one should refrain from associating any physical meaning with this duration: it 
is to be used as a parameter within RVT to predict response spectra together with the empirical 
FAS. The advantage of treating the duration as a parameter is that it absorbs any mis-
specification of the model. 

Equation (2.28) shows the relation between the “rms” duration and the maximum 
oscillator response. If Davenport’s [1964] PF is used, the relation becomes: 

0
max

rms

0.577
1ln

2ln
z

z

m
x N

DN

 
    
 

 (2.29) 

with Nz the expected number of zero crossings, and mk the kth spectral moment: see Section 
2.2.1. Because the spectral moments can be calculated from the FAS [i.e., ( )X f ], Equation 

(2.29) contains only one unknown parameter: the duration Drms. Hence, Drms can be inverted by 
minimizing the misfit (ξ) between the observed response acceleration spectrum [ ( )]aS f  and the 

RVT-calculated maximum response  max ( )x f . Since the response spectrum is log-normally 

distributed, the misfit is calculated as: 

2

max[ln ( ) ln ( )]a
f

S f x f    (2.30) 

Note: although the idea of an optimized duration is independent of the specific PF 
formulation, it is important to be consistent. For each PF formulation, an optimized duration can 
be estimated, but because these two are tied together, forward calculations need to be made with 
the same assumptions/formulations that were used in the inversion of the duration. 

As an example, durations were calculated for two records using both the PF of Cartwright 
and Longuet-Higgins [1956] and that of Davenport [1964]. One of the records is from the 
Saguenay event with an epicentral distance of 442 km (record ID 70 in the NGA-East database). 
The other record is from the Mineral event (record ID 8365 in the NGA-East database). Table 
2.1 presents the calculated durations. Figure 2.12 shows the corresponding observed response 
spectra and the RVT-calculated spectra. The durations based on the different PF formulations 
vary, but the misfit is close in both cases, and the RVT-calculated response spectra are very 
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similar. Hence, if the calculations are internally consistent—forward calculations are done with 
the same PF as the inversion for the duration—the results are close. 

Up to this point in the inversion it has been assumed that Drms and the actual ground-
motion duration are the same. In application of the stochastic method, an adjustment is needed to 
match (1) response spectra calculated via RVT and (2) those based on time-domain simulations 
[Boore and Joyner 1984; Liu and Pezeshk 1999; and Boore and Thompson 2012]. Theoretically, 
such a model could be incorporated into the inversion process. 

When the duration is optimized against response spectra, it is the appropriate duration to 
use if the goal is to predict response spectra. Therefore, an empirical FAS model as well as a 
model for the spectrum-compatible duration can be used that predicts the FAS and duration as a 
function of magnitude, distance, and other source- and site-related parameters. When the 
predictions are combined via the RVT framework, a response spectrum prediction is obtained. 
Refer to Bora et al. [2014] for greater detail. 

Table 2.1 Optimized durations Drms, calculated for two different PF formulations: Cartwright 
and Longuet-Higgins [1956] (CLH56) and Davenport [1964] (D64), and the 
associated misfit ξ. 

Record Formulation Drms (sec) ξ 

ID 70 (Saguenay) 
CL56 34.05 4.32 

D64 34.59 4.33 

ID 8365 (Mineral) 
CL56 47.80 5.81 

D64 48.85 5.84 
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3 Corrections for Non-Stationarity 

Ou and Herrmann [1990] demonstrated that for peak values such as PGA and PGV, the careful 
selection of a window can overcome much of the non-stationarity problem. But for resonant 
systems, such as SDOF oscillators or layered soils, the problem of non-stationarity is an issue. 
For these systems, there are two methods for adjusting the PFs to correct for non-stationarity: 

 modifying the duration of the motion 

 directly scaling the PF 

This section presents methods developed to address the non-stationarity of response spectra 
independent of the ground-motion duration. 

3.1 NON-STATIONARITY CORRECTIONS BASED ON DURATION 
MODIFICATION 

3.1.1 Boore and Joyner [1984] 

Boore and Joyner [1984] explicitly separated the duration used for computing the number of zero 
crossings and extrema from the duration used to compute the “rms” acceleration of the ground-
motion intensity measure (GMIM). The number of zero crossings and extrema are computed 
from the characteristic frequency (a function of the spectral moments) and the duration of 
shaking, which is assumed to be DT (sometimes termed DEX for the duration of excitation). DT is 
inappropriate for computing the “rms” response from the amplitude spectrum of the oscillator 
because it will continue to respond after the ground motion has stopped. This is illustrated in 
Figure 3.1 (Figure 19 in Boore [2003]), which shows the response of a 10-sec oscillator to a 
small (M 4) and large (M 7) earthquake. Boore and Joyner [1984] found that the following 
equation captured the interaction between the oscillator’s duration and the ground-motion 
duration: 

rms 0

n

T n
D D D


 

 
    

 (3.1) 
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3.1.3 Boore and Thompson [2012] 

Boore and Thompson [2012] noted that after using the modifications discussed above, clear 
trends in the GMIM residuals still existed, particularly for small-to-moderate magnitudes and 
moderate-to-large distances. Therefore, they generalized the Drms equation to be able to model 
more variations of Drms with magnitude, distance, and period. They noted that Drms can be solved 
in terms of the time-domain peak values (ytd) and the RVT peak values with no oscillator 
correction (yxo; i.e., Drms = DT) 

2
rms ( )T xo tdD D y y  (3.3) 

This equation can be rearranged so that ratio of the durations is equal to the squared ratio of the 
peaks 

2
rms ( )T xo tdD D y y  (3.4) 

Figure 3.2 plots the squared peak ratios against period and against period normalized by 
the ground-motion duration for a range of magnitudes and distances; see Boore and Thompson 
[2012] for the parameters of the stochastic model used to generate these curves. This figure 
illustrates the effect of normalizing the period by the ground-motion duration where much of the 
apparent variability in rms TD D is reduced. For this reason, Boore and Thompson [2012] 

modified the general function form for Drms used by Boore and Joyner [1984] and Liu and 
Pezeshk [1999] to be 

rms 1
1 (1 )

2
n

T

D

D
 


      

where 0 TT D  . Additional terms were then added to better fit the observed ratios: 

7
3

3 6

rms 4
1 2

5

1
1

21 (1 )

cc

c c
T

D c
c c

D c

 
 

                
 (3.5) 

In this function,  and n are now free coefficients (c5 and c6) to be estimated from the 
data, and the function approaches c1+c2 as η approaches zero and c1c2 as η approaches 
infinity. Boore and Thompson [2012] fit the coefficients of this equation to the squared ratios 

2( )xo tdy y , where the coefficients vary with magnitude and distance. They developed one set of 

coefficients from a seismological model that is appropriate for use in SCRs and one that is 
appropriate for ACRs. Inspection of the squared ratios from these two different sets of 
simulations clearly indicates that the Drms correction depends upon the seismological model. 
Additionally, there have been a number of updates to the stochastic method published since 
Boore and Thompson [2012]; thus the coefficients needed to be updated, as discussed next. 

 

α
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Figure 3.2 Squared ratios of PSA from random-vibration simulations (for which Drms = DT; 
i.e., no oscillator correction) and time-domain simulations. Note that DEX is 
synonymous with DT; see Boore and Thompson [2012] for details of the 
stochastic model. Left panels: the squared ratios are plotted against period (T0). 
Right panels: the squared ratios are plotted against T0 normalized by the ground 
motion duration 0( )TT D . The top row shows ratios for a fixed distance (20 km) 
and a suite of magnitudes; the bottom row shows ratios for a fixed magnitude 
(6.5) and a suite of distances. 

3.1.4 Boore and Thompson [2014; 2015] and Update to Boore and Thompson 
[2012] 

Subsequent to Boore and Thompson [2012], a number of important updates have been made to 
the stochastic method that will affect Drms/DT. These include: 

 Revised path durations [Boore and Thompson 2014; 2015] 

 Revised crustal amplifications [Boore and Thompson 2015] 

 Generalized double-corner frequency source model [Boore et al. 2014] 

 Adjustments to the finite-fault correction factor [Yenier and Atkinson 
2014; Boore et al. 2014] 
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 A new “rms”-to-PF (R2PF) based on Vanmarcke [1975] and Der 
Kiureghian [1980] 

Figure 3.3 shows spectral displacements for a standard SCR model (equivalent to that 
used in Atkinson and Boore [2006]) computed using TD and RV computations. The bottom row 
shows ratios of the RV/TD simulations. Although the RV simulations using the Der Kiureghian 
[1980] R2PF are closer to the TD simulations (which are taken as the correct values) for small 
magnitudes and short periods than those using the Cartwright and Longuet-Higgins [1956] 
R2PF, neither R2PF is acceptably accurate; additional curves were added to Figure 3.3 for the 
Boore and Thompson [2012] Drms model. While the Boore and Thompson [2012] coefficients 
work relatively well for the CL R2PFs (which were used in the RV simulations by BT12), they 
do not work well for the DK R2PFs. Thus, the coefficients need to be recomputed for the new 
R2PF and seismological parameters for SCRs and ACRs. 

To check that the coefficients were estimated accurately, the TD/RV ratios were plotted 
for a range of magnitudes, distances, and periods. Figure 3.4 shows maps of the ratio TD/RV for 
a SCR model as a function of period and distance for the range of magnitudes used in the 
simulations (2 to 8). In these figures, period rather than frequency was used to be consistent with 
the published sources. The top row shows the ratio TD/RV with no adjustment to Drms. The 
second row shows the ratio when the RV simulations used the value of Drms from Boore and 
Thompson [2014], which were derived by fitting the ratios in the top row of the figure (note the 
expanded scale compared with that of the top row of graphs). This indicates that the Drms 
correction is sufficiently accurate across the magnitude, distance, and periods of interest. 

Next, the consistency of the TD/RV ratios was evaluated as reasonable changes were 
made to the seismological model. Figure 3.5 shows the TD/RV ratios for SCR models with 
somewhat different parameters than the base model used in deriving the coefficients for Drms. 
Note the expanded scale used for the graphs (0.9 to 1.1). All of the SMSIM parameter files used 
in the simulations for the TD and the RV simulations are given in the electronic supplement of 
Boore and Thompson [2015]. The first and second rows in Figure 3.5 are for the same model 
used to derive the coefficients (i.e., the base model) but with stress parameters of 100 bars and 
1600 bars, respectively, rather than 400 bars. The results imply that the adjustments to Drms are 
relatively insensitive to the stress parameter. The models used in the third and fourth rows depart 
even farther from the base model. The third row uses parameters that are consistent with the 
Atkinson and Boore [2006] model; the most important differences between this model and the 
base model are path duration, geometrical spreading, and attenuation functions. The graphs in the 
fourth row use a double-corner-frequency source model given by Atkinson [1993a], but 
otherwise the parameters are the same as those in the base model. Except for those events that 
are of little interest (e.g., very small magnitudes or long periods), the results in Figures 3.4 and 
3.5 show that relatively accurate results (within about 10% for the examples discussed herein) 
can be obtained for RV simulations using Drms values obtained for models that are different than 
the models for which the simulations are being done. 
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3.2 NON-STATIONARITY CORRECTIONS BASED ON PEAK FACTOR 
MODIFICATION 

Section 8.3.2 of Vanmarcke [1976] considered the time-dependent response of a SDOF 
oscillator. Integrating the transient squared amplification function over all frequencies yields the 
following scale factor: 

gm1 exp( 4f nn f T         (3.6) 

where   and fn are the damping and natural frequency, respectively, of the SDOF transfer 
function. This non-stationarity factor corrects for the fact that an oscillator may not reach steady-
state conditions during the interval from 0 to Dgm. The response within the duration of the ground 
motion rms gm[ ( )]x T  is related to the steady-state response [ ( )]rmsx   by Toro and McGuire [1987]: 

rms gm rms( ) ( ) fx T x n    (3.7) 

3.3 DISCUSSION AND SUMMARY 

This section presents two methods for modifying RVT methodology. The influence of these 
corrections is evaluated by computing the ratio of the oscillator response computed by the 
corrected and uncorrected approaches presented in Table 3.1. The TM87 method is not 
represented here because the same corrective factor is used by the V75 formulation. The ratio 
between corrected and uncorrected oscillator response for the three events considered in Section 
2.2.2 are shown in Figure 3.6. For the BT12 “rms”-duration correction, the coefficients for the 
CENA region were used. For the M 3.5 event, the five different correction methods provide very 
different estimates. Because the BT12 method only provides coefficients down to M 4, the 
corrective ratio for BT12 is not shown in Figure 3.6. The least significant ratio (i.e., closest to 1), 
is the DK85 ratio, although based on modifying the Nz parameter to fit empirical results, it does 
not explicitly consider non-stationarity. The more significant ratio is the V75, which adjusts 
directly the PF based on duration required for steady-state response. Unlike the other corrective 
ratios, the V75 ratio does not return to unity at low frequencies. 

As the magnitude increases, all corrective methods show similar shifts to lower periods 
due to the longer ground-motion duration. Each of the “rms”-duration methods (i.e., BJ84, LP99, 
and BT12) show similar albeit slightly different corrective ratios. 

While the Boore and Thompson [2015] coefficients are very accurate for the rock 
parameters used to derive the coefficients—and acceptably accurate for reasonable adjustments 
to the seismological parameters—they will likely not be accurate for simulations using the full-
resonance site-response calculations and equivalent-linear nonlinearity (e.g., Kottke and Rathje 
[2013]). This is because the coefficients do not account for the increased duration of the 
oscillator due to site response resonances or substantial changes to the spectral shape. This could 
be addressed by developing an additional parameter that is a function of the site characteristics to 
adjust the Boore and Thompson [2014] Drms coefficients. Alternatively, new Drms equations can 
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4 Processing Ground Motions using the 
Random Vibration Theory Approach 

The records used for ground-motion model (GMM) development per the NGA-East RVT 
approach (see Chapter 11 by Hollenback et al. in PEER Report No. 2015/04 for further details on 
this approach) required additional processing beyond what is described in Goulet et al. [2014]. 
The two primary additional steps are: 

 Definition of an orientation-independent FAS to represent the two as-
recorded horizontal components of a record 

 Smoothing and down-sampling of the orientation-independent FAS to a 
reasonable number of frequency points in order to develop a frequency-
by-frequency GMM-based FAS 

The RVT Working Group’s proposed approach for completing these tasks is discussed below. 

4.1 ORIENTATION-INDEPENDENT FOURIER AMPLITUDE SPECTRUM 

The GMM development (e.g., constraining magnitude scaling and distance attenuation) was 
performed on the FAS of recorded ground motions. Subsequently, PSA GMMs were defined 
using this FAS model and a calibrated duration model through RVT. The FAS and duration 
models were developed from an orientation-independent FAS. We refer to this orientation-
independent FAS as the effective amplitude spectrum (EAS), which is defined as 

2 2
HC1 HC2

1
EAS( ) FAS ( ) FAS ( )

2
f f f     (4.1) 

where FASHC1 and FASHC2 are the FAS of first and second as-recorded horizontal components of 
a three-component time series. By definition, this is independent of the orientation of the 
instrument. Figures 4.1 and 4.2 compare the FAS of the two as-recorded horizontal components 
to the EAS for two records from the NGA-East database [Goulet et al. 2014]. 

  



 
 
 
 
 

Figurre 4.1 Fo
U
ar
T
th

ourier amplitu
S.GOGA. The
re plotted alon
he green verti

he record. 

ude spectra fro
 north and eas
ng with the eff
ical lines repr

36 

om the Cap-R
st component
fective amplit
esent the high

Rouge event re
ts (FASHC1 in
ude spectrum
h-pass (HP) an

ecorded at sta
n blue and FAS
m [Equation (4
nd low-pass f

ation 
SHC2 in red) 
.1) in black). 

filters (LP) of 

 



Figur

4.2 S

As part 
durations
was a co
defined i
recorded 

T
points; re
practical 
developin
EAS in t
frequency

re 4.2 Fo
(S
re
b
(L

SMOOTHIN

of the NGA
s to make th
ompromise b
in Table 4.1
record lengt

The resulting
ecords with 

number of
ng GMMs in
the database
y points. A 

ourier amplitu
Station ID 8). T
ed) are plotted
lack). The gre

LP) of the reco

NG AND DO

A-East unifo
he frequency
between reco
1. This is a 
th. 

g FAS for th
a high Nyqu
f frequencie
n which reg

e were unifo
wide range

ude spectra fro
The north and
d along with th
een vertical lin
ord. 

OWN-SAMP

orm record 
y step, Δf, in
ord length an

departure f

hese processe
uist frequenc
es to use w

gression is pe
ormly smoot
e of smoothi

37 

om the Cap-R
 east compon

he effective am
nes represent t

PLING 

processing, 
n the FAS a
nd reasonab
from other d

ed records c
cy have over
with the N
erformed fre
hed and dow
ing operator

Rouge event re
nents (FASHC
mplitude spec
the high-pass

all time se
as uniform a
bly similar Δf
datasets whe

contain very
r 100,000 fr

NGA-East FA
equency-by-
wn-sampled 
rs are availa

ecorded at sta
1 in blue and 

ctrum (Equatio
s (HP) and low

eries were p
as possible. T
Δf, and result
ere Δf is de

y large numb
requency poi
AS modelin
-frequency. T
d to a manag
able, each a

ation CN.A11 
FASHC2 in 

on (34), in 
w-pass filters 

padded to lo
The choice 
ted in the tw
efined by th

bers of frequ
ints. This is 
ng approach
Therefore, a
geable numb
allowing diff

 

onger 
of Δf 

wo Δf 
he as-

uency 
not a 

h for 
all the 
ber of 
ferent 



38 

smoothing levels. The smoothing technique and level must be carefully selected so as to not 
introduce bias relative to the original dataset. 

In the context of RVT performed using the Vanmarcke PFs (see Section 2.2.1.3), there 
are four FAS quantities controlling the process in addition to duration: the zeroth spectral 
moment [m0, Equation (2.4)], δ [a measure of the ground motion band width, Equation (2.14)], 
the frequency of zero crossings [fz, Equation (2.5)], and the frequency of extrema [fe, Equation 
(2.7)]. The smoothing criterion for the current application was as follows: that the smoothed, 
down-sampled EAS led to similar quantities as the complete EAS for the four properties relevant 
to RVT. 

Several smoothing windows of various widths were considered and tested, including the 
Hamming, trapezoidal, and triangular windows. Application of such windows to linear sampling 
of frequencies led to bias in spectral shape, especially at low frequencies, and did not allow a 
close match to the four quantities listed above. To prevent these issues, the RVT working group 
selected the Konno and Ohmachi [1998] (KO) smoothing window, which is based on the log10 
sampling of frequencies. The KO window weights are defined by: 

sin[ log( )]
( )

log( )
c

c

b f f
W f

b f f

 
  
 

 (4.2) 

where W is the weight defined at frequency f for a window centered at frequency fc and defined 
by window parameter b. Window parameter b can be defined in terms of the bandwidth in log10 
units of the smoothing window as: 

2 wb b   (4.3) 

where bw is the bandwidth of the smoothing window in log10 units. The KO smoothing window 
was selected because it resulted in little-to-no bias on the amplitudes of the smoothed EAS when 
compared to the unsmoothed EAS. Other smoothing windows considered (the Hamming 
window, trapezoidal window, and triangular window) did not. Figure 4.3 shows the KO 
smoothing window for fc = 5 Hz and four different values of bw. 

 

Table 4.1 Frequency sampling of the NGA-East dataset. 

NGA-East Data Type 1 Type 2 

sps 10, 20, 40 50, 100, 200 

dt 0.1, 0.05, 0.025 0.02, 0.01, 0.005 

Duration (sec) 3276.8 2621.44 

Power of 2 15, 16, 17 17, 18, 19 

Δf 0.00030518 0.0003815 

 



Figur

T
order mo
the FAS 
square of

A
combinat
sampling
subseque
fe, were 
comparis
be define
smoothed
and each
and down
Table 4.2
that fell w

re 4.3 C
sm

The four RVT
oments of the

of the groun
f the EAS in

All EAS in 
tions of smo

g; see Table
ent GMM de

calculated 
son was don
ed by the G
d and down-

h oscillator p
n-sampled R
2 lists the pe
within ±1% 

omparison of
moothing win

T properties
e oscillator f
nd motion. T

n the NGA-E

NGA-East 
oothing wind
e 4.2. To de
evelopment, 
for the ori
e at three dif

GMMs: 0.01 
-sampled EA
eriod. We qu

RVT properti
ercentage of
of original 

f Konno and O
dow bandwid

s selected for
frequency re
Thus, the sm

East database

database w
dow bandwi
etermine the

the four pro
ginal EAS 
fferent oscil
sec, 0.2 sec

AS was com
uantified the
ies fell withi
f records tha
RVT proper

39 

Ohmachi smoo
ths: 0.01, 0.02

r calibration
esponse func
moothing an
e. 

ere smoothe
idth, bw, and

e combinatio
operties sele
and the sm

lator periods
c, and 10 se

mpared to tha
e number of 
in a given pe
at had smoot
rties. Based 

othing window
2, 0.033, and 0

n are all func
ction, which 
nd down-sam

ed and dow
d number of
on that wou
ected for RV
moothed and
s and covere
ec. The valu
at of the orig
f records in t
ercentage of
thed and do
on this crite

ws with four d
0.067. 

ctions of sev
is a function

mpling was p

wn-sampled 
f frequency 
uld have the
VT calibratio
d down-sam
ed the full ra
ue of each p
ginal EAS f
the database 
f the original
own-sampled
eria, the com

different 

veral differe
n of the squa
performed o

for six diff
points for d

e least impa
on, m0, q, fz,
mpled EAS.
ange of perio
property from
for all the re

whose smoo
l RVT prope
d RVT prop
mbination of

 

ent nth 
are of 
on the 

ferent 
down-
ct on 
, and, 
 The 

ods to 
m the 
cords 
othed 
erties. 
erties 

f bw = 



40 

1/30 and 100 frequency points per decade was identified as having the least impact on the four 
RVT calibration properties and were, therefore, selected for smoothing and down-sampling of 
the NGA-East database. Close inspection of the records falling outside of the 1% range led to the 
elimination of these records on the basis of a peculiar spectral shape around a limited frequency 
band. Figures 4.4 and 4.5 compare the original EAS and the smoothed and down-sampled for 
this selected combination for two different records. 

Table 4.2 Percentage of records in NGA-EAST database that have RVT properties of the 
smoothed and down-sampled EAS within ±1% of the RVT properties of original 
EAS. 

Oscillator period = 0.01 sec 

Number of frequency 
points per decade 

Width of smoothing window, 
bw (fraction of a decade) 

m0 q fz fe 

30 1/15 46% 49% 86% 88% 

30 1/30 18% 20% 47% 57% 

50 1/30 35% 39% 80% 85% 

50 1/50 19% 21% 54% 63% 

100 1/30 99% 98% 100% 99% 

100 1/100 24% 26% 64% 70% 

Oscillator period = 0.2 sec 

Number of frequency 
points per decade 

Width of smoothing window, 
bw (fraction of a decade) 

m0 q fz fe 

30 1/15 21% 15% 87% 92% 

30 1/30 12% 10% 66% 78% 

50 1/30 25% 24% 89% 94% 

50 1/50 14% 13% 73% 83% 

100 1/30 99% 98% 100% 100% 

100 1/100 17% 15% 79% 88% 

Oscillator period = 10 sec 

Number of frequency 
points per decade 

Width of smoothing window, 
bw (fraction of a decade) 

m0 q fz fe 

30 1/15 22% 37% 60% 76% 

30 1/30 11% 14% 32% 37% 

50 1/30 30% 34% 63% 70% 

50 1/50 19% 19% 40% 43% 

100 1/30 94% 99% 99% 100% 

100 1/100 37% 28% 58% 56% 
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5 Conclusions and Future Work 

5.1 CONCLUSION: RECOMMENDED APPROACH 

This report evaluated the use of RVT for the purpose of median GMM development. Based on 
their relevance to engineering and seismology communities, two PF formulations are 
recommended: (1) Cartwright and Longuet-Higgins [1956], and (2) Vanmarcke [1976]. The 
associated duration corrections developed by Boore and Thompson [2014; 2015] are 
recommended when response spectra are being computed. Alternatively, new durations 
optimized to minimize PSA bias could be computed from a region-specific database; that 
approach, applied to the NGA-East project, is discussed in Chapter 11 of PEER Report No.  
2015/04. 

The orientation-independent FAS referred to as the effective amplitude spectrum (EAS) 
is recommended to characterize the frequency content of recorded ground motions. Down 
sampling of the EAS should be done using a Konno and Ohmachi [1998] smoothing window 
with a width (bw) of 1/30 and 100 frequency points per decade. Because this smoothing window 
was identified as having the least impact on the four RVT calibration properties, it was selected 
for smoothing and down-sampling of the NGA-East database. 

This report was originally developed in 2014 for the NGA-East project to document a 
basis for the ground motion processing and to provide recommendation on the practices for 
random vibration theory. Since the original draft of this report, there have been additional 
studies on random vibration theory that are not included in this report, such as: Wang and 
Rathje [2016]; Wang and Rathje [2018a; 2018b]; and Van Houtte, Larkin, and Holden [2018].  

5.2 FUTURE WORK 

Several RVT topics were barely touched-on in this report and we identify selected avenues for 
future research.  

1. RVT for site response. Site response studies such as Kottke and Rathje [2013] have 
demonstrated the potential misfit between TS and RVT site-response analyses. 
Evaluating RVT for site response is beyond the scope of this document and has not 
been considered herein. Future work regarding RVT should consider not only how 
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the method works on simple SDOF oscillators but also on multi-degree of freedom 
systems (e.g., site response and SDOF oscillators). 

2. Host-target corrections. Host-target corrections have been recently used to correct 
acceleration response spectrum for different site attenuation parameters (e.g., Al Atik 
et al. [2014]). These correction factors are dependent on the RVT methodology used. 
Further research needs to be conducted to ensure that the correct factors are not 
influenced by the PF formulation selected. 

3. Applicable frequency range of RVT. The current RVT procedures use a combination 
of theoretical and empirical corrections to provide accurate estimates of the peak 
time-domain response. The empirical nature of the correction might cause the RVT 
results to be accurate only over a select frequency range. This aspect of the empirical 
corrections has not been well investigated. 
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