X PREFACE

Some of the numerical methods discussed in this volume have not yet
seen their full development. The thrust of future research will be to use
seismological measurements to infer the physical properties of more realistic
and refined three-dimensional Earth models. Lateral variation in upper
mantle structure, oceanic-continental boundaries, plate boundaries, and
mountain roots will be studied quantitatively for the first time using surface-
wave dispersion. The effect of soils and local geological structure on strong
earthquake shaking will be predicted by numerical methods.
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i. Introduction

As MoST OF THE chapters in this book indicate, seismologists usually model
the velocity and density structure of the earth with heterogeneity in the
vertical direction only. Mathematical solutions for wave propagation in
such models are relatively straightforward. There are' a number of important
problems in seismology, however, for which lateral changes in material
properties are significant. Because the geometry in these cases cannot be
represented as normal surfaces in a system of separable coordinates the
solution of the direct problem is not simple, and some type of perturbation
or numerical solution is necessary.
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A number of different numerical schemes of varying complexity have
been used to solve elastic wave propagation problems. In a continuing series
of papers Alterman and her co-workers have used a simple finite difference
method to solve the vector elastic equations of motion when subject to some
specific initial and boundary conditions (Alterman and Karal, 1968 ; Alterman
and Aboudi, 1969; Alterman et al, 1972; see chapter by Alterman and
Loewenthal in Volume 12 for a more complete list of Alterman’s papers). This
method was also used by Bertholf (1967) to solve for the transient displace-
ments in an elastic finite cylindrical bar subjected to applied stresses at one
end. Plamondon (1966) used a different, more complex method to compute
the motion due to a spherical source beneath the earth’s surface. Even more
involved methods, which are capable of following the motion through regions
of plastic, shock, or brittle behavior, have been devised by Maenchen and
Sack (1963) and Petschek and Hansen (1968), among others. Another com-
putational scheme which has been very successful in studying eigenvibration
problems and is currently attracting much attention in seismology is the
finite element method (see chapter by Lysmer and Drake, this volume).

Two other recently developed methods (not discussed in this volume) for
wave propagation in laterally heterogeneous media are the wave scattering
method of Aki and Larner (1970; Larner, 1970) and the perturbation method
of Claerbout (1970a, b, 1971), Claerbout and Johnson (1972), and Landers
(1971). These methods, potentially very valuable, have received little atten-
tion up to this time.

The usefulness of any of the above schemes depends greatly on the prob-
lem being solved; one must choose that method which gives reasonable
answers with the least amount of storage space and computer time. The
straightforward finite difference method discussed in this chapter is a prac-
tical way of solving a number of pertinent seismological problems. The
essence of this technique is to replace the differential equations and boundary
conditions by simple finite difference approximations in such a way that an
explicit, recursive set of equations is formed. This results in a time-marching
procedure which can be used to solve for the displacements at each grid
point as a function of time given the motion at the first two time steps.

There are many advantages to the finite difference method discussed in
this article. Some of these are that it is very easy to program, many different
problems can be solved with only minor alterations of the program, and the
preparation of input data for a particular problem is not tedious. Further-
more, as opposed to steady-state solutions, the use of transient signals gives
information at many frequencies from one computer run. The transient
signal, in combination with the explicit set of equations, also makes the
treatment of artificial boundaries (required by computer storage space
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limitations) more natural and less worrisome than in most other numerical
schemes. Another convenient feature is that displacements as a function of
time at a given site or pictures of the total wave field at a given time can be
obtained with equal ease. :

The finite difference method will probably find its greatest use in solving
problems not possessing analytical solutions, but it can also compete with
the analytical solutions, especially when such solutions require the evaluation of
complicated series expansions (Alterman and Karal, 1968). The ease with
which it can be programmed makes the finite difference method an ex-
cellent pedagogical tool in illustrating concepts of wave propagation in
a dynamic, controllable manner. It is particularly useful for this if propaga-
tion is restricted to one dimension only, for then the computations are very
rapid.

The technique is limited, for practical reasons, to certain classes of
problems. It is difficult to enumerate these here, but in a general way we can
say that it is most useful in the near field region of sources, where the sources
can be either real or, as in this chapter, effective sources introduced by com-
plexities along the travel path. Thus, for example, it would be impractical
to use the finite difference method to evaluate the surface displacements of
a short period body wave incident upon an irregular crust-mantle interface.
On the other hand, it is ideal for the solution of a layered model in which
the layer thicknesses are on the order of the seismic wavelengths.

Finite difference methods for problems involving partial differential
equations have been developed and used for years in such disciplines as
meteorology and civil and mechanical engineering. To be useful in seismo-
logical problems, however, wave propagation in models having material
property variations in at least two spatial dimensions must be treated. This
requires large amounts of computer space and rapid calculations, and it was
only several years ago that machines capable of handling such problems
were commonly available (one of the first papers dealing with numerical
wave propagation to appear in the seismological literature was by Cherry
and Hurdlow in 1966). Although there is no lack of possible methods based
on finite differences, relatively few have actually been tested and applied to
nontrivial seismological problems. It is the goal of this chapter to present
in detail the methods used and experience gained by the author in making
several of these applications, with the hope that it will stimulate others to
explore further the uses of the method. Several improvements included here
have not been discussed by the author in previous publications. Theoretical
aspects of finite difference solutions to partial differential equations have been
avoided. For these, reference should be made to one of the textbooks on the
subject (e.g., Richtmeyer and Morton, 1967).
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II. Method

A. ASSUMPTIONS

The basic problem concerns transient wave propagation in a semi-infinite
half-space bounded by a stress free surface. The free surface need not be
planar nor must the material making up the half-space be homogeneous.
The material through which the waves propagate is assumed to be isotropic
and linearly elastic (the treatment of viscoelastic material is discussed briefly
in Section ITI,A). Because of storage space and computation time limitations
we assume that all variations in material properties, boundaries, and wave-
fields take place in only two spatial directions (x, z).

With these assumptions the general elastic motion can be uncoupled
into two types: horizontal shear motion (SH), characterized by displacements
v in the y direction only, and coupled compressional and shear motion
involving the x, z components of displacements u, w. Although many of the
methods discussed below can be applied to the complete vector equation,
this chapter will be concerned exclusively with SH motion. One of the
primary reasons for this is that less storage space and computer time are
required than in the corresponding vector elastic case, and thus more realistic
heterogeneities can be modeled within the space-time limits available.
Furthermore, the seismic radiation from earthquakes usually contains a
significant amount of SH motion and it is SH motion that is of greatest
interest in engineering seismology.

B. DERIVATIVE APPROXIMATIONS

1. Standard Formulas

The basis of the finite difference technique is the replacement of differ-
ential operators by difference approximations. These approximations can
be found in a number of ways; here we only intend to introduce notation
and present some formulas. Further details may be found in textbooks
such as Smith (1965) and Mitchell (1969).

The continuous x, z, ¢ space is divided into rectangular blocks. The
displacement field is then specified by values at the discrete set of nodepoints
represented by the corner intersections of the blocks. For constant x, z,
and ¢ spacing Ax, Az, and Az, any node is uniquely determined with reference
to an arbitrary coordinate origin by the indices m, n, p. Thus v}, , = v(m Ax,
n Az, p Ar), where subscripts refer to spatial location and superscripts to time.
The absence of an index implies that the variable represented by that index
can take continuous values, as in v, , = v(m Ax, n Az, t). When interface

FINITE DIFFERENCE METHODS FOR SEISMIC WAVES 5

conditions are discussed at a boundary between two media, the subscripts
1 and 2 will sometimes be used to denote the respective media. No confusion
should exist with the more usual subscripts representing spatial location.
As a final piece of nomenclature, in future discussions the term “‘ computa-
tional star” will be used; this refers to the spatial pattern of gridpoints used
in the difference approximation of a differential operator.

With the above notation, standard centered approximations for first
and second derivatives are

(O0]0X),y = (Vpi1)2 = Vp~1,2)] B, )
(0%0/0x%),y 2 (Vi1 — 20 + Uy 1)/ (AX)2 )
Another centered approximation to the first derivative is
(00]0x),y = (Vs 41 — Ui—1)/20x. 3
We will also use single-sided approximations, such as

(av/ax)m =~ (Um+1 - v,,,)/Ax, (4)

to the first derivative. These are of a lower order of accuracy than the cen-
tered approximations in Egs. (1) and (3).

All of the above formulas apply, with obvious changes, to derivatives
with respect to z and ¢. Formulas for nonconstant Ax, Az, and Af can also
be found easily (e.g., Boore, 1970b; Rowe, 1955). For example, the formula
for the second x-derivative is

% Vst v v
zv ~ 2 m _ m m—1 , 5
(ax"‘)m [hz(h1 i) ik, +h,2)] )
where h,, h, are the spacings between nodes m — 1, m and m, m + 1.

2. Attempted Use of Splines

For the wave equation in a homogeneous material we seek an approxi-
mation to the Laplacian operator acting on the displacement field at a given
time. This is obtained by using Eq. (2) and a corresponding expression for
the second z-derivative. Since one way of obtaining Eq. (2) is to differentiate
an interpolating quadratic polynomial fit to the three points m — 1, m, m + 1,
one might wonder if a better interpolating polynomial could be found which
would give similar accuracy but with larger grid spacings. In this way a given
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spatial area could be represented by a smaller number of grid points an.d
thus the computation time, which is proportional to the number of gnd
points, would be reduced. As an exploratory attempt, bicubic sp}igei functxons
(Bhattacharyya, 1969) were fit to sets of points obtained by dlgltlgllug th@e
cycles of a sine wave at different rates. Derivatives of the r.esult.mg spl'me
function, evaluated at the node points, and difference approximations using
Eq. 3) and Eq. (2) on the tabulated set of points from'which the spline was
generated, were then compared with the exact values. Figure 1 shows'a meas-
ure of the mean percentage error, averaged over the second cycle (in order
to avoid end condition effects) of the sine wave, as a function of digitized
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Fic. 1. The mean error, as a function of sampling rate, from spline and finite difference
approximations to the first (---) and second (—) derivatives of a sine function.

points per wavelength. The spline gives a better approximation to the .ﬁrst
derivative, but surprisingly, both the spline and finite difference approxima-
tion of the second derivative are nearly equivalent. Thus no obvious advantage
would seem to accrue from splines as used here, especially considering that
a4 matrix inversion (albeit a rapid one) is needed to generate the spline func-
tion. Splines, however, are finding utility in other areas of seismology, such
as in the smoothing of travel time tables (Curtis and Shimshoni, 1970),
calculation of divergence factors (Shimshoni and Ben-Menahem, 1970),
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calculation of ray theory amplitudes (Moler and Solomon, 1970), and
Jocation of small earthquakes (Wesson, 1971). The negative result obtained
here does not imply that splines are not useful in other ways in the
numerical solution of differential equations; books such as Schoenberg
(1969) contain references to such techniques.

Disregarding splines, Fig. 1 shows the effect of grid spacing on the
accuracy of the finite difference approximations (2) and (3). For example,
at least 7 points are required per wavelength in order to obtain an accuracy
of 95% in the second derivative. More discussion about the wavelength—
gridspacing relationship will be found in Section 1LE,1.

C. EQUATIONS OF MOTION

The basic equation for the displacement v in an inhomogeneous medium is
v 0 ( 8v)+ (7( ov ©)
=5 = — =1,

Por " ax\Max) Tz \Maz

where u(x, z) is the rigidity of the material and p(x, z) is the density. Body
forces (f) have been neglected; if present, an additional term pf would be
added to the right-hand side. Since wave propagation through homogeneous
material joined along discrete interfaces is of most interest, a discussion of
the general heterogeneous equation of motion will be deferred until the
next section (which deals with boundary conditions). In a homogeneous
material Eq. (6) becomes

p 0%vjét? = uv3e. )
where V7 is the Laplacian operator. Replacing the derivatives by the differ-

ence approximation in Eq. (2), and gathering all the terms at time levels
7, p — 1 on the right-hand side, gives, as an approximation to Eq. (7),

p+1l ¥4 Jp—1 2 2
vm,n - 2Um,n . vm,n + ﬁ At
p — p p P p p
livar I,n 2Um, n + vm— t,n Um, n+1 T 2Um, n + Um, n—1 (8)
2
(Ax)? (Az)?

where f = (u/p)'/? is the shear wave velocity. This is the basic equation
used in the computations. It is explicit in the displacement at the new time
level p + 1, and it is recursive; given initial displacements at two consecutive
time points it is a simple matter to compute displacements at any other time
by a forward time-marching process.
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In common with most explicit finite difference approximations to partial
differential equations, a condition relating the time and space grid intervals
must be satisfied if the solution to the difference equations is to be stable.
For the wave equation, this condition in practice is not excessively restrictive.
This is in contrast to the heat flow equation, where the stability condition is
so restrictive that implicit, unconditionally stable methods such as the alter-
nating direction implicit scheme (Mitchell, 1969) must be used.

Various implicit methods, based on splitting the two-dimensional problem
into several problems implicit in one direction only, do exist for the wave
equation; Mitchell (1969) gives a thorough discussion of these schemes.
Some are unconditionally stable and others, although requiring stability
relations, are highly accurate. These schemes are all implicit and require a
number of tridiagonal matrix inversions, for which there are very rapid
~algorithms, to progress from one time step to the next. Although more
complicated than the explicit scheme given in Eq. (8), these methods may
be useful in certain classes of problems. Because these schemes are in large
part untested, however, there is a need for experimentation to determine
their usefulness and limitations.

D. BounDparY CONDITIONS

1. Physical Boundaries

Although Eq. (6) in combination with initial conditions completely
defines the problem, a special case arises where a discrete change in rigidity
occurs across some surface in the body. Then Eq. (6) implies both

(1 Ovjom), = (u dvfon)_, €)

where 0/dn is a derivative normal to the interface, and v, =v_. These
conditions can also be expressed as the continuity of normal stress and
displacement across the interface.

The explicit boundary condition at the stress free surface is

(Gv/on)gyys. = 0. (10)

We can get this from Eq. (9) by assuming (). = 0.

Most published applications of the finite difference method to elastic
wave propagation involve plane, rather than curved, interfaces. For these, a
number of methods which involve explicit approximation to the interface
boundary condition (9) can be devised (Alterman and Karal, 1968; Bertholf,
1967; Boore, 1970a; Chiu, 1965). These approximations, however, are
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difficult to generalize to curved interfaces, and for this reason a relatively
crude but adequate method was derived by the author. For want of a better
name, this was called the explicit continuous stress method. Recently,
several methods based on the heterogeneous wave equation have been
investigated, and these appear to be superior in every respect to the explicit
continuous stress method. Both of these approaches to curved boundaries
are discussed below. Since these methods also work for plane interfaces
(which are just a particular form of a curved boundary), the more specialized
plane interface methods mentioned above will not be discussed.

a. Heterogeneous Media Approach. The interface condition (9) can be
derived by considering the behavior of the equation describing the motion of
a heterogeneous material, Eq. (6), as the distance over which the rigidity
change occurs decreases to zero. This suggests that a natural way of treating
the interface is to write approximations to Eq. (6) at the grid points near the
interface. Two approximations are given below, and both reduce to Eq. (8)
when the medium has uniform properties.

We are concerned only with the approximation of the right-hand side of
Eq. (6); the time derivative can be replaced by the standard centered differ-
ence approximation. If the first derivative operator (1) is applied consecu-
tively, the x-derivative is given by

-~

i (ﬂ _‘ZI{) ~ H+ 1/2 Um+1 - (/vlm+ 1/2 -+ Hop l/Z)Um + Moy — 1/2 Um—l
ox \" dx (Ax)?

(an

The approximation of the z-derivative is similar. Since we have detailed
knowledge of the rigidity for any point in space, evaluating it midway
between grid points, as implied by g, 41,, and jt,,_;,,, is not a problem.

Another approach which depends more on the detailed variation of
u(x, z) is due to Tikhonov and Samarskii (Mitchell, 1969, p. 23). To start, a
variable w, defined by

w = — u(dv/dx), (12)
is introduced. The equation above is rewritten
win = —0v/dx (13)

and integrated over the interval [(m — 1) Ax, m Ax]. Replacing w byaconstant
“mean-value™ w, _,, gives

o dx

ome B0, Z)

W(Um - vmwl)’ (14)

W1 /2
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and similarly for w,,,,,. These equations can be solved for w,_;,, and

Wyg1/2- Sinice
i(ﬂ@) :M(QVX> =12 = Wk ag (15)
ax ax m ax m - Ax

we have finally

a au AlN v"l el - A"l + Am - U"l + A"t m
——(ﬂ——) 2( = ( 421) +10 +15 (16)
ox \" 0x/,, (Ax)
where
S dx] T
A = Ax[ — . 17
: J n (17)

Similar formulas hold for the z-dependence. In effect, the heterogenous
methods given by Eq. (11) and Eq. (16) determine equivalent values of
rigidity at the node points in the computational stars; derivatives of the
rigidity are never taken explicitly. For a given computational star it is natural
to define, as shown in the inset in Fig. 2, the equivalent rigidities as
B, Bs, e, Hw)-

35
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FiG. 2. The equivalent rigidity at the ““southern” point of the computational star
placed at n (see inset). In this example the curve intersects only the southern leg of the com-
putational star. Curve 1 is for Eq. (18) and curve 3 is for Eq. (11). Curve 2 is a modification
of curve 1.
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The formulas (11) and (16) hold for any arbitrary rigidity dependence.
When the rigidity has a step change in valuc, as when two homogeneous
materials are joined together, the integration in Eq. (17) can be performed
explicitly. Then, referring to the gridpoint-interface relation shown in the
inset to Fig. 2, we have

1
U =07 + (= 0y

Apyy = (18)

where 0 Az is the distance from the center point to the interface. Also note
that for the specific grid-interface relation shown A, = =y, and
g = iy = ft;. The equivalent rigidity pg, as given by (18) and as implied in
Eq. (11) (curves 1 and 3, respectively), is graphed as a function of 6 in Fig. 2
for values of y, and p, used in the second example in Section 1V,B,1. Curve
2 in the figure is the result of assigning 0 = 0 whenever 0 is less than 0.1.
The difference between the curves 1 and 2 and curve 3 is considerable, but
seems to have little effect on the results.

A special interpretation must be given Eq. (17) when the path of integra-
tion coincides with a boundary separating media of different rigidities. One
possibility is to assume a wavy interface that is alternately above and below
consecutive gridpoints; then letting 0 = 0.5 in Eq. (18) would be appropriate.
Another possibility is to assume g = (i, + pt,)/2 along the path of integration.
For several reasons the latter choice seems to be proper: it gives better
answers when applied to Love wave propagation on a flat layer, and gives
an equation which is identical to those derived from two different approxi-
mations of the explicit interface condition.

As noted before, the free surface boundary condition is a special case of
the interface condition; thus, the interface conditions along a free surface of
varying shape can be treated using the heterogeneous media approach if we
consider the air above the surface to be a uniform material of zero rigidity.

b. Explicit Continuous Stress Method. This method is best explained
with reference to Fig. 3. For certain grid points, such as A or A’, the Laplac-
jan cannot be approximated by a regular star wholly contained within one
medium. The Laplacian at these interface points can be written, using Eq.
(5), in terms of an irregular star with short legs. This star will involve dis-
placements at actual grid points and at “ curve points” defined by interface—
grid line intersections. In Fig. 3, point D is one of the two curve points
required for the irregular star placed at A. Assuming that displacements are
known at all grid points and curve points at times p, p — 1, the difference
equation can be used to generate new displacements at time p + 1 for all
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Fi1G. 3. A portion of the spatial grid near a curved boundary. The labeled points are
referred to in Section II,D,1,b (from Boore, 1970b).

but the curve points. The new curve point values are given by approximating
the explicit interface condition (9) in the following manner:

(1) A normal to the curve is constructed at D.

(2) The displacements at the normal-grid line intersection C is deter-
mined by linear interpolation between grid points A and B (and similarly
for C).

(3) An approximation to the interface equation, given by

o+
va+1 _ Ug+l Ug, 1 016+1

g, D 19
DC Ha DC’ > ( )

1y

where DC, DC’ are the lengths along the normal from C, C’ to D, is used to
obtain the new curve point displacement v4"!. The curve point values are
not required to satisfy explicitly the wave equation, but are given as weighted
averages of nearby points which do; thus, in a uniform material the equation
used at the curve point will not reduce to the usual equation of motion.

As discussed in Section 11,F,2, a local instability usually is produced by
the short legs in the irregular computational star near the interface. This
instability is sometimes, but not always, a problem, and two devices are used
to make it less so. The first is to deform the curve so that it passes through
any grid point which is less than a specified distance from the curve; the
grid point is then treated as a curve point, and an approximation to the
Laplacian is not used. This eliminates very short legs. The second procedure
is simply to decrease the time spacing so that it more closely approximates
the time step required by the local stability condition. This, of course, can
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be very costly, and is a major reason that the heterogeneous approaches
discussed above are more desirable. The heterogencous approaches are also
superior because they are more general and are easier to program.

2. Artificial Boundaries

Because of the limitations of finite computer storage, it is obvious that
wave propagation in a medium unbounded in any direction cannot be
modeled. Artificial boundaries must be introduced. This places some definite
constraints on the length of time for which the computed solution can be
considered free of contamination. Since the manner in which the artificial
boundaries are treated is dependent on the problem, a general treatment of
these boundaries cannot be given; instead, a specific example will be discussed
to illustrate some of the possibilities.

The example is that of SH body waves vertically incident from below
on a crust or surficial layer with a localized, irregular but symmetric interface
(Fig. 4). The vertical and bottom boundaries shown in the figure are all
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F1G. 4. SH body waves incident on a symmetric basin. Shown are the conditions used
at the artificial boundaries and the location of the initial displacement. Adapted from Boore
et al. (1971).
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artificial, in the sense used above. The symmetric structure and vertical
incidence enables us to solve for the motion in just half the region, as shown,
with the condition dv/0x = 0 at the left boundary (plane of symmetry), thus
treating it as a free surface. The displacements along the right boundary
can be given in several ways. If, as at the bottom of Fig. 5, the irregularity
in the structure is assumed to be periodic, then the right boundary also can
be treated as a free surface. Another approach is to give the right-hand
boundary displacements as a function of time by the numerical solution
to an auxiliary one-dimensional problem of SH waves vertically incident
on a flat layer of appropriate thickness. This is an attempt to approximate
wave propagation in the real, nonperiodic model. The numerical rather than
the analytical solution is used because of the time-space limitations required
by the Fourier synthesis in the analytical solution. The displacements along
the bottom are given by the analytical solution to the one-dimensional problem.
This solution, which requires one Fourier synthesis at the beginning of the
program, is used both for the regular and auxiliary problems.

The methods above for the artificial boundaries are only approximate
(except for the left-hand symmetry condition). The differences between the
computed solution and the actual solution that would exist in the absence of
the boundaries act as secondary sources and produce spurious reflections
which contaminate the solutions at the surface. The secondary sources are
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FiG. 5. Models implied by artificial boundary conditions if (lower) the free surface
condition is used at b, and (upper) if the solutions to the auxiliary problem are used at b.
The area within hachures is stored in the computer.
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not important until the incident wave has had a chance to reflect off the true
interface and travel back to the artificial boundaries. Because of this, at the
surface the contamination usually is present only in the later parts of the
time series. The contamination due to both methods will reach any point at
approximately the same time, but that produced by the free surface artificial-
boundary condition should be larger and easier to recognize. Contamination
is unavoidable, and the more easily it is recognized, the less chance there is
of interpreting it as real motion. For this reason the free surface method for
the artificial boundary is preferable to the use of solutions to an auxiliary
problem.

The treatment of artificial boundaries is rather unsatisfactory and could
stand much improvement. For single-frequency solutions, in contrast to the
transient disturbances treated here, it may be possible to use some kind of
impedance matching to terminate the space with reflectionless boundaries
(Lysmer and Kuhlemeyer, 1969). Another possibility is to use numerical
approximations to the absorbing mechanisms employed in laboratory wave
tank experiments. As it now stands, in practice the artificial boundaries are
placed as far from the region of heterogeneity as is economically feasible.
Numerical experiments, using different distances to the sides and bottom,
are essential to define the space-time region that is free of contamination.

E. IntTiaL CONDITIONS

If a localized heterogeneity is surrounded by simple, plane-layered
material, as in Fig. 6, an analytic solution for wave propagation in the plane
layered media can be used to start the finite difference solution. If the initial
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FI1G. 6. A simple, source-free wave propagating into the region of heterogeneity. Waves
commonly used as input are vertically incident SH body waves or Love surface waves of a
given mode propagating on the waveguide to the right or left of the heterogeneity.
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wavefield is zero in the region of heterogeneity, then by definition the equa-
tions of motion and boundary conditions throughout the medium will be
satisfied. The transient disturbance is propagated through the region of
interest by the numerical scheme. This hybrid approach insures that the
input motion is free of unwanted phases. It is only in the specification of
initial conditions that reference is made to a particular type of problem,
such as Love surface waves or SH body waves; the equations of motion and
boundary conditions are completely general. The difference scheme will give
the total wave solution to the formulated problem as the initial disturbance
propagates into the heterogeneous medium.

The basic characteristic of the input motions considered in this chapter
is that they are set up by sources an infinite distance away, and thus are
plane, source-free waves. This restriction is only for convenience. Converg-
ing or diverging waves, or waves from point or distributed sources within
the medium, can also be included in the formalism without difficulty (e.g.,
Alterman and Karal, 1968; Alterman and Aboudi, 1970; Alterman et al.,
1972).

Although the principles hold for all types of input motion, most of the
discussion below will focus on vertically incident, source-free plane SH waves
with an impulse-like waveform. The use of the impulse waveform brings out
some subtleties connected with the discrete nature of the grid through which
the waves propagate. '

1. SH Body Waves

a. General Remarks. In the following discussion, the discreteness effects
mentioned above are ignored; if the input motions are distributed over a
number of grid points, these are negligible, and experiments indicate that
even for impulse-like initial functions the naive approach presented below
can give adequate answers. An understanding of the influence of the discrete
grid is important, however, in evaluating the results of the finite difference
computations, and for this reason these effects are discussed at length in
part ¢ of this section.

Let the waveform of the input motion be given by g(&). The solution v,
for a vertically propagating, plane SH body wave in an infinite medium is then

vo(z, 1) = g(z + Blt — 1p]), (20)

where z is zero at the free surface and is positive downward, f is the shear
velocity in the lower medium, and 7, is a time delay used to insure that the
motion is essentially zero at the initial times in the region of changes in
material properties. The basic approximation to the equation of motion,
Eq. (8), requires displacements throughout the grid at time 0 and Ar (or
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equivalently, displacement and velocity at # = 0) in order to propagate ahead
in time. These initial displacements are given by the following scheme:
first, vy, and Um. s are set to zero for all m, n; second, for all grid points
below the heterogeneous zone (which is usually a layer near the surface) the
displacements are given by vy, ,, = vo(n Az, 0) and Upn = Ug(n Az, AP) for all
m’s. In effect, the continuous, infinite-media wavefield at two times is digitized
in the horizontal and vertical directions.

b. Impulse Approximation. The form of g(&) is quite arbitrary and until
recently was chosen as a transient wavelet, discussed by Ricker (1945), with
zero dc component and relatively narrow bandwidth in both wavenumber
and spatial domains. In most cases, there were at least 20 grid points per
dominant wavelength in the input motion. Because the results of the finite
difference calculations are usually analyzed in the frequency domain, how-
ever, a more logical choice for an input function would be one possessing
a broad frequency spectrum, and thus a short time (or space) extent. In
addition to the broad frequency spectrum, there are several other desirable
features associated with the short time duration. One is that the resulting
seismograms are approximations to the impulse response of the model, and
the various reflections and diffractions making up the motion are not smeared
together as they are when a broad input motion is used; more information
about the physics can then be obtained. Furthermore, the time delay term
tp in Eq. (20) can be very small. This gives a reduction in the number of time
steps needed to propagate the disturbance through the heterogeneous region
as compared with the use of longer input motions with correspondingly
larger time delays. Finally, the small spatial extent of the input motion allows
the use of an expanding grid scheme such as discussed for Love waves in
Section 11,G,2.

If we attempt to use, as in Fig. 7, a true spike, the digitized displacement
field at 7= Ar would be zero since the stability criterion discussed later
requires that a wave move less than a grid spacing in a time A¢. The forward
sense of direction of the wave is then lost, and backward propagating waves
will result. Thus, we wish to use a spike-like function spread over several grid
points; at the same time it would be desirable that the function possess con-
tinuous first and second derivatives. Both these objectives can be met by the
following procedure (adapted from Alterman and Karal, 1968). Let

G, = [[otn) dn = H(®), (1a)
tO . .

i

R :
Gs = [ Gty dn = = (o), (21d)
o 6
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where d(n) is the Dirac delta function and H(&) is the Heaviside step function.
G, has continuous first and second derivatives. We then take four consecu-
tive centered finite differences over an arbitrary interval L/4 and normalize
the result to unity at ¢ = 0. This gives

Gu(E+ L) = 4G, + L)2) + 6G,(8) — 4G4 — L/ + Go(( - L)

@) = e

(22)

as an approximation to the delta function which has continuous first and
second derivatives and is zero for |¢| greater than L. Note that {(5(¢)) is a
continuous function of £. To specify initial conditions on the discrete grid,
we let g(&) = (0(&)). A convenient measure of the width of g is then L/Az.

c. Effects of a Discrete Grid. There are two effects associated with the
use of a discrete grid which should be remembered when analyzing results of
the computations: the aliasing of the continuous time series, and the disper-
sion of waves propagating on a lattice.

The aliasing effect can be explained best by referring to Fig. 7, where
the digitized form of a spike at times 0 and Af is given by the solid circles.

FrGg. 7. A spike and the cor- / \
responding function which has no o / \ o~
power above the Nyquist wave- == < <
number 77/Ax, at two consecutive
times. The closed and open circles t=0 /' \
are the digitized forms of thespike / \

and its corresponding function. / \

N
~ ‘{ Az *..,,*/

The problem is that the amplitude spectra of the two discrete time series
will be different; it will be flat for 7 = 0 and zero for t = Ar. As shown in the
figure, however, the discrete values at ¢t = 0 could also come from the function

sinc & = [sin(n/Az)E}/(n/Az)E. (23)

This has a flat spectrum up to the Nyquist wavenumber (k, = n/Az) and is
zero thereafter, and it is not aliased by the digitization. The result of using
this function to generate the displacements at ¢ = Af is given by the open
circles in the upper part of Fig. 7. The two open-circle time series have the
same amplitude spectra and are therefore consistent representations of the
input motion.
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Generalizing the discussion above to an arbitrary form of the input
motion, it follows that sinc® {5(&))> (where * represents convolution) should
be used, in place of Eq. (22), to generate the input motion. The result of
neglecting the aliasing effect is to produce as initial input a mixture of propa-
gating waves rather than the single source-free wave desired; this mixture
will produce undesirable modulation in the wavenumber or frequency
domains, Obviously, the effect of aliasing will diminish as less power above
the Nyquist wavenumber is included in the spectrum of the continuous input
function ¢g(¢). The Ricker pulses used in computations were chosen such
that they had virtually no power above Nyquist, and thus the effect above
was negligible.

Another problem encountered by short duration pulses is that the velocity
used to advance the input motion at ¢ =0 to 1 = At is dependent on wave-
number for waves propagating on a discrete lattice (Brillouin, 1953). This
dispersion is shown in Fig. 8 for waves on a one-dimensional spring-mass

1.0
>~
g c/¢Co
S o8t
Fi1G. 8. Phase {¢) and group !
o 19
(U) velocities for wave propaga- >
tion on a simple spring-mass a os6r U/cy
system. cq is the phase velocity for ul
propagation in the corresponding 2 0.4+
continuous media. The abscissa is Z
equivalent to the product of wave- = 02+
number and grid spacing.
OO 1 i i

3
00 Of 02 03 04 05
[GRID POINTS / WAVELENGTH] ™'

system. The dispersion becomes important for 10 or fewer grid points per
wavelength. This illustration also emphasizes that even if the initial conditions
are calculated so as to take the aliasing and the dispersion into account, care
must be taken, in analyzing the results, to separate the effects due to the
discrete nature of the actual problem being solved from the real effects of
the physical problem we are attempting to model. In practice, this would
probably mean neglecting all information for frequencies higher than some
arbitrary cutoff value.

A possible way of including the aliasing and dispersion effects in the
initial displacements is to first specify vp, , in the usual way from {5(¢)) and
then take a Fast Fourier Transform (FFT) over the z-index n. (Because of
the vertical incidence and plane wave, vy, , is independent of n1; thus, only



20 DAVID M. BOORE

one transform is required.) The corresponding spectrum is then advanced
by the phase factor exp[jk, c(k,) At], where k, are discrete wavenumbers and
c(k) is the discrete grid phase velocity, and then resynthesized with another
FFT to produce v,, , for all #’s.

2. Love Surface Waves

Although the above discussion also applies to Love waves, or for that
matter to any other input motion, the effects of the discrete grid will now be
ignored in order to concentrate on another aspect of the input motion.
Because Love waves are inherently dispersive, the main problem in specifying
the initial conditions is evaluating the function vy(x, z, 7). This can be done
easily by using the eigenfunction of the problem in combination with a FFT
to synthesize a traveling wave solution such that v,(x, 0, 0) = g(x), where
g{x) is an arbitrary waveform. It is most convenient to take the FFT over
discrete wavenumbers which are consistent with the grid spacing x, for then
at a specified depth and time one FFT will give the displacements at all
horizontal grid points. If NZ is the number of grid points in the vertical
direction, 2 - NZ Fast Fourier Transforms will be required for the generation
of the initial conditions.

F. TRUNCATION, STABILITY, AND CONVERGENCE

We would like to guarantee that solutions to the difference equations
remain bounded as the computations proceed (that is, errors at a given time
step do not become magnified) and further, that as we make the grid spacings
smaller and smaller these solutions approach the solution of the differential
equation. Rigorous treatment of such matters is beyond the scope of this
chapter, but some useful and informative results can be derived from simpler
analysis.

1. Truncation

A measure of truncation error in a finite difference approximation is
given by inserting the solution to the corresponding differential equation
into the difference approximation. If the error approaches zero as the grid
spacing decreases, then the difference approximation is said to be consistent
with the differential equation. To study this, let #(x, z, 7) be a solution to
Eq. (6). Since most of our problems involve composite materials made of
homogeneous media, we assume for convenience that u 1s a constant. By
expanding ¥ in a Taylor series, evaluating it at the grid points used in the
finite difference approximation of the differential equation, and using the
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. . . . . . Ada a4
second time derivative of the wave equation to find an expression for 0*9/0¢%,
the truncation error in the difference equation can be written

error = {8,25 — B*[8.%D + 8, %51}, u
ﬂz 2 A2 2 -_ail_j _aj?.J 2 w—w—«a% Atz}
= B AT - A S G| F A G

m, n

+O(AY, AxT) - (24)

where Ax = Az and 6,2, 6,2, and 6,% are difference operators defined by
Eq. (2). The truncation error approaches zero as Ax, At — 0, and thus the
equations are consistent.

If 0*5/ox? 0z* =0, as it is when the motion is in one direction only,
the choice B Ar = Ax will cause the second-order error term in Eq. (24) to
vanish. For one-dimensional motion the stability condition, as shown below,
is f At < Ax. Thus, for a given 8 and Ax, Ar should be taken close to its
upper limit. For general two-dimensional motion the mixed derivative is
not zero, and the error term cannot be made to vanish by a judicious
choice of the grid spacing. In fact, the relation f§ At = Ax violates the stability
condition for two-dimensional motion. Letting Az be close to its upper limit,
however, is probably the optimum choice, as it will make the first term of
the error as small as possible.

2. Stability

The easiest way of investigating stability is to use the Fourier series
approach pioneered by von Neumann (O’Brien ef al., 1950). This, however,
does not consider the effect of boundary conditions, and therefore a different
technique based on matrices will be used (see, e.g., Smith, 1965). Let v* be a
vector with the node point displacements at time p as elements. The equations
of motion and interface conditions can be combined in the matrix equation

V= AvP + BvP T, (25)

where A, B are matrices to be given later, and the superscript, as usual,
stands for the time level at which the displacements are evaluated. By defin-
ing, in block notation,

o = ( Zil) 26)
.
and
A B
P [1 0], 27



22 DAVID M. BOORE

where T and 0 are identity and null matrices, we can rewrite Eq. (25) as
wtl = Pu?, (28)

A necessary condition that the errors at some time step do not become
magnified with time is that the eigenvalues, 4, of P be less than or equal to
1.0 in magnitude. If # is an eigenvalue of A, Fox (1962) shows that || £2
implies |A] < 1. If we write out the elements of A for the difference approxi-
mation of Eq. (6), assume Ax = Az, and use Gershgorin’s theorem (Mitchell,
1969), the following stability condition is found:

By AtjAx £1/4/2, (29)

where

<ﬂ>2 = Hun + pis + pp + )/ p. (30)

The un s, g, w are the equivalent rigidities at the node points in the computa-
tional star surrounding any arbitrary point at m Ax, n Az. Equation (29) is
important and accurately predicts when instabilities will occur. For a uniform
material it is identical to the stability condition found from von Neumann’s
method.

In a completely nonuniform material, {#> would be a nonconstant function
of (x, z). All of our applications, however, involve uniform materials and thus
{f> will be constant over most of the grid; it will change locally only in the
vicinity of the interfaces between the media. This means that in practice we
can use Eq. (29) with {f) replaced by the highest uniform media velocity,
Pmax» Dresent in the model. Furthermore, inspection of the formulas for
Hn.s.g,w show that {f> < B, and thus no instability should arise from the
interface when it is treated as a heterogeneous material. When the explicit
continuous stress method is used, on the other hand, the asymmetric difference
approximations to the Laplacian near the interface use short internodal
distances. If Ar has been determined on the basis of both the maximum
velocity and the minimum Ax or Az of the regular rectangular network,
then the short internodal distances will cause local violations of the stability
conditions, and an instability can arise. The instability will grow away from
the point of initiation, and will eventually swamp the whole grid. This is
different from the result found when Eq. (29) does not hold over a wide area,
for then, although the instability may start in several local regions, it almost
immediately spreads to the entire area. In either case, the use of a time
marching scheme enables one to see when and where an instability arises,
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and it often happens that usable solutions can be obtained in a problem
which is eventually overwhelmed by an instability.

As a final remark, the stability condition for a uniform medium of » space
dimensions is

B AtjAx < 1//n. 31

Thus, for a given grid spacing, going to higher dimensions requires smaller
time steps and proportionately more computation time. This is of minor
importance, however, when compared to the increase of time resulting
from the increase in the number of grid points.

3. Convergence

Convergence exists if the solution to a difference equation approaches
the solution of the corresponding differential equation as the mesh is refined.
For consistent difference equations, convergence is often intimately associ-
ated with stability; for one-dimensional wave propagation in an unbounded
medium the conditions for convergence are precisely those for stability
(Fox, 1962). Two-dimensional, bounded domain problems are more difficult
to treat, but numerical experiments again show that for all practical pur-
poses the existence of stability implies convergence.

G. COMPUTATIONAL DETAILS

One of the appealing features of the finite difference method presented
on the previous pages is the ease with which it can be programmed. Because
of this, only a few details of the programming will be discussed.

1. Storage Space

Because we need displacements at two time levels, p and p — 1, in order
to calculate the values at the next time step, it would seem at first glance that
we require storage spaces for three time levels [i.e., GYNX)NZ) spaces,
where NX, NZ are the number of grid points in the x, z directions]. Since,
however, ¢~} is only used once, in the calculation of v”*! at m, n, the storage
locations occupied by the displacements at the p — 1 time level can be used
for the new values. Then only (2)(NX)(NX) spaces are required in the array
of displacement values.

Another comment about storage concerns the weighting factors (un s g, w)
in the finite difference approximation of the heterogeneous wave equation.
These factors are most logically computed before the time marching proceeds.
If the medium is completely heterogeneous it is necessary to store four



24 DAVID M. BOORE

weighting factors at each grid point. This is an important limitation on the
usefulness of the technique if a large amount of storage space is not available.
[n regions of homogeneous material, however, the weighting factors are
constant and it would be redundant to store them all. Then it is most practical
to define the heterogeneous regions by an array of indices, and store the
weight factors in corresponding arrays. When sweeping the grid in the time
marching process, the new displacements are computed first for all the
homogencous regions using Eq. (8). After this, Eq. (11) or Eq. (16) is used
with the previously determined weighting factors to calculate the rest of the
new values.

2. Expanding Grid

Because many grid values are initially zero, only a steadily increasing
portion of the entire grid need be swept at each time iteration. This is espe-
cially important in the case of Love waves, where typically the initial displace-
ments are contained horizontally within 100 points but 200 more points
represent the medium into which the wave is to propagate. Sweeping all 300
horizontal grid points at each iteration would needlessly waste much compu-
tation time. The expanding grid concept as applied to Love wave propagation
is shown schematically in Fig. 9. As shown, the reasoning also can be extended
to “bring up the rear” of the Love waves. Since reflected waves are expected,
however, this is not as justified as pushing out the front. In practice, the rear
is brought up at a slower rate than the front is advanced, and is stopped at a
predetermined point (mmg,, in the figure) to allow for reflected waves in the
vicinity of the inhomogeneity. This scheme of pushing out the front and bring-
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FIG. 9. The expanding grid scheme for Love wave propagation. At any given time
step displacements are computed for the horizontal portion of the grid indicated by solid
lines. All vertical grid points are used at each time step.
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ing up the rear results in a considerable saving of time. Storage space can be
saved also by continually backfilling the displacements into the leftmost
anused portions of the grid.

3. Qutput

Two kinds of output are commonly used. Printer—plot *“snapshots”” of
the motion, generated at given times, are the first type and are useful as a
qualitative check on the progress of the solution. In particular, these snap-
shots are very useful in looking for instabilities. Displacement values from
“seismometers” located at arbitrary positions in the medium are the second
type of output. These are stored at predetermined time intervals and, after
completion of the time cycles, are punched on cards to be used in subsequent
analysis. Most of the subsequent analysis is done in the frequency domain
and usually involves computations of phase velocities in the Love wave
experiments and spectral ratio determinations for the SH body-wave results.
Examples are given later.

1i1. Extensions of the Method

Many more techniques and possible applications exist than indicated by
the development above. Discussed below are some which should prove
useful in seismology.

A. VISCOELASTIC PROBLEMS

Chiu (1965) and Alterman and Aboudi (1969) have done some computa-
tions using simple Maxwell and Voigt viscoelastic models, apparently with
no difficulty. Explicit schemes can be used for both, but the difference approx-
imation for the Voigt model, as compared with the perfectly elastic case
and Maxwell model, uses v %7} more than once in computing displacements at
the time level p + 1. By the proper use of temporary storage locations,
however, still only two levels of storage for the displacement field are required.

The stability criteria for the simplest approximation to the Voigt equa-
tions is given by

B At/Ax < (1// DML + (DNJm)]', (32)

where D is the fractional damping ratio and N is the number of points per
wavelength, The formula above is adapted from one given by Alterman and
Aboudi (1969) and is valid for all practical values of D and N. This stability
condition is not overly restrictive. For the explicit Maxwell scheme, the stabil-
ity condition is essentially that given by Eq. (29).
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B. CRACK PROBLEMS

Several successful applications of the finite difference technique to crack
problems have been reported by Alterman ef al. (1972) and, using a more
complicated scheme than developed in this chapter, by Hanson and Sanford
(1970) and Hanson er al. (1971). The simulation of crack propagation in
complex materials could be casier and less costly than source-free problems
since the artificial boundaries are of lesser importance and the generation of
initial conditions need not use complicated computations, such as Fourier
transforms, at a large number of grid points.

C. HyBRID SCHEMES

As has been emphasized, the finite difference technique is most uscful in
near-source calculations, whether these be real sources such as above, or
secondary sources caused by heterogeneities. For secondary sources,
our primary concern, a hybrid approach was used in which analytic
solutions for uniform or simply layered material were propagated by the
finite difference method through locally inhomogeneous regions. A more
complete hybrid approach would then use the resulting wave fields and
propagate these through the remaining uniform media in an analytic manner.
In this way we could evaluate the effect of a given heterogeneity at any arbi-
trary distance. The question is: how do we continue the finite results? A
representation theorem could be used from which v at an arbitrary point in
space could be found given v(¢) on some surface enclosing the heterogeneities.
The surface values would be given by the finite difference results. The imple-
mentation of this may be difficult, and it might be more practical to decom-
pose the total computed motion into various components with known modes
of propagation. As an example, in the case of two plane-layered waveguides
joined by a heterogeneous region (as in Fig. 6), an attempt could be made to
break down the motion on the far side into leaking and trapped modes. The
trapped modes could then easily be propagated analytically. A problem in
such decompositions is finding an orthogonality condition that will separate
the trapped from leaky energy. Alsop (1968) discusses this.

IV. Numerical Experiments and Examples

The examples to be presented are intended to illustrate various features
of the finite difference method, not the physics of the problems considered.
The physical significance of the results are given in Boore (1970b, 1972) and
Boore et al. (1971). All computations were performed in single precision
arithmetic on either an 1BM 360/65 or IBM 360/67 computer.
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A. Love WAVES

1. Plane-Layered Models

It is important to test the numerical method on problems for which
independent answers are available. Toward this end, several problems of
Love wave propagation on one- and two-layered half-spaces were solved.
The Love wave calculations used a grid with internode spacing which, after
a given depth, increased with distance in the downward direction. The
purpose was to take advantage of the decay with depth of the Love wave
displacements in order to increase the time interval at the surface before
spurious reflections from the bottom contaminated the solution. This device
seemed to work for the problems considered, but Lysmer (1971) and Frizonnet
(1970) reported that in other problems spurious reflections were produced
at the point where the increased scaling with depth started.

Time series computed by the finite difference method and by the synthesis
of the theoretical eigenfunctions were saved at several sites spaced at equal
intervals along the surface. Fourier transforms of these time series were
used to compute intersite phase velocities and amplitude ratios (normalized
to the first site encountered by the wave). The results for a model with a low
velocity zone, given in Fig. 10, show excellent agreement between
theory and computation. At the high and low ends of the spectrum the small
amount of power in the input motion produces scatter in the results, but this
is encouragingly small.

Of interest is whether the inaccuracies in the computations are steadily
increasing with time or tend to damp out. The extreme case of instability
is easy to recognize, of course, but a gradual loss of accuracy is not. To study
this, the wavenumber spectra of the surface displacements for a model
with a single layer over the half-space were compared, at different times,
with theory. The error was investigated in the wavenumber rather than the
frequency domain since the displacements throughout the grid at any fixed
time represent the same number of algebraic manipulations. This is opposed
to the time series at a given node point, in which each value represents a
different number of computations. Because, however, the error propagates
as a wave, the ideal would be to study the error spectrum in frequency—wave-
number space.

The percent error in the computed wavenumber spectral amplitudes are
given as a function of time and wavenumber in the last three columns of
Table 1. The first column contains the wavenumber and the second column
contains, for reference, the theoretical amplitude for each wavenumber.
This table shows that the error in amplitude is small, that the relative error
(e.g., error at t = 84 scc compared to that at 7 = 42 sec) increases with time,
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Fic. 10. Love surface wave propagation on a model with a low velocity layer. Phase
velocities were computed between three stations spaced 120 km apart. The model was
B1. B2, Ba, = 4.75,4.55, 5.20 km/sec; pi, p2, ps = 3.3, 3.4, 4.0 g/cc; layer thicknesses 100
and 200 km. Computational parameters were Ax = 10.0 km, Az = 1.25 sec, and NZ = 60
(includes scaling of grid spacing with depth). @ Theoretical, O calculated.

TABLE L

PerRCENT ERROR IN AMPLITUDE AS A FUNCTION OF WAVENUMBER

AND TIME™?
Theoretical
k amplitude t =42 sec t = 84 sec t =126 sec
0.012 0.15 —04 —1.2 —1.9
0.024 0.35 —1.6 —2.2 —2.9
0.037 0.30 —2.4 —3.4 —4.5
0.049 0.15 —2.5 —4.1 —4.5

“ Physical model: f;, B,=3.85, 4.75 km/sec; p;, p»=3.00,
3.65 glecc; H =15 km. Computational parameters: Ax=35 km;

At =10.7 sec.

b Adapted from Boore (1970b).
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and that the computed amplitudes are consistently lower than the theoretical
amplitudes. The phase spectra errors, not given here, show a consistent, small
bias which imply an overestimation of phase velocity, but they do not in-
crease in an obvious way with time.

As a final example of a problem having an analytical solution, the com-
puter generated results for a model of two layer-half-space combinations
joined by a vertical boundary are shown in Fig. 1. (This problem has an ana-
Iytical solution only if certain relations between the physical parameters are
satisfied.) Printer plot “snapshots” are given at several instances of time
and clearly show the reflected and transmitted waves caused by the interaction
of the incident motion with the vertical interface. The computed results and
the theoretical results agree to within a few percent.

N
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Fi1G. 11. Printer-plot contours of Love wave propagation in a model with two layer-
half-space combinations joined along a vertical interface. The interfaces are shown by
solid lines (the horizontal interface is shown only once).
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2. Sloping Layer Models

The model shown at the bottom of Fig. 12 is a representation of an
ocean—continent boundary. Two types of input were used, one with the waves
propagating to the right (updip) and one to the left (downdip). Phase veloci-
ties were computed between the stations shown over the region of thickness
change, with the results shown in the upper part of the figure. The interface
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Fic. 12. Phase velocities measured over the region of thickness change for Love wave
propagation. See text for the explanation of curves a, b, and c.

was treated by the explicit continuous stress method (curve a), a generaliza- -

tion of this using higher order approximations to derivatives (curve b), and
the regular explicit continuous stress method with a smaller grid spacing
(Ax = 3.0 km rather than 5.0 km; curve c). In this problem no analytical
answers are available; the close similarity of the results, however, gives
reassurance that the distinct nonreciprocity in measured phase velocities is
real and not a peculiarity of the numerical method.

B. SH WAVES—VERTICAL INCIDENCE

1. Basin Problems

In the examples below the basins are symmetrical about the left boundary,
and thus only half the solution field is shown. Printer-plot contours of dis-
placement are shown in vertical sections at four instants of time in Fig. 13.
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(a) (b)

{c) (d)
FiG. 13. Contour plots at times (a) 5.0, (b) 6.0, (¢) 7.0, and (d) 8.0 sec for a SH wave
vertically incident on a basin [see Figure 2 in Boore et al. (1971) for plots at earlier times].

The growth of a local instability is shown by the expanding blank area. Physical parameters:
Ax = 0.2 km, At = 0.025 sec.



32 DAVID M. BOORE

The explicit continuous stress method was used to treat the interface in this
problem, and because of the short legs in the computational star near the
interface a local instability was produced. The spreading blank area in the
figure (blank because the numbers were outside the specified range of contour
values) represents the growth of this instability.

The model in Fig. 13 had a relatively steep walled basin and had velocities
appropriate to the crust-upper mantle interface. Of more interest to. earth-
quake engineering is the symmetric basin, filled with low rigidity sediments,
shown in Fig. 14. The computed motion at the surface over the center of the
basin and the auxiliary solution are shown in the upper part of Fig. 14. The
dashed time series is the solution to the one-dimensional problem obtained
by replacing the basin by a layer of uniform thickness equal to the maximum
basin thickness; this is known as the flat layer approximation (FLA). The
Fourier spectrum of each trace was computed, and spectral ratios were formed
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Fic. 14. Computed seismograms at the surface of a basin filled with tow velocity
sediments. The seismogram on the right is the reference trace, computed from the auxiliary
problem, to which the other time series are compared. The dashed curve is from the flat
layer approximation.
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by dividing by the spectrum of the auxiliary solution. The amplitude spectra
of the two solid-line time series in Fig. 14 are shown in the top of Fig. 15,
and the amplitude ratios are given in the lower part of the figure. The circles
are results from a completely different method for solving the problem (Aki
and Larner, 1970). The excellent comparison gives confidence in the finite
difference results.

The basin problem was solved using the explicit continuous stress method
and also the three heterogeneous material approaches implied in Fig. 2; the
results were all in good agreement. Because abnormally small time steps
were not required by the presence of local instabilities, the heterogeneous
material runs were four times faster than the explicit continuous stress
computations. The heterogeneous approach took a little over 3 min of

X = 0.0 km
— — — Reference

AMP. SPECTRUM

AMP. RATIO

FREQUENCY (Hz)

FiG. 15. Frequency-domain comparison of the results in Fig. 14. The amplitude spectra
at the top as divided to produce the solid-line curve at the bottom. The open circles are
from the independent method discussed by Aki and Larner (1970). For comparison pur-
poses, the time series were multiplied by an exponential window before Fourier analysis;
this is equivalent to propagation in a material having damping which increases with period.
Adapted from Boore ef al. (1971).
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IBM 360/67 execution time for 350 time steps on a 75 x 100 grid. Accurate
solutions could undoubtedly be obtained with larger grid spacings, thereby
reducing the computation time.

2. Topography Problem

A semi-infinite medium with surface topography is shown in Fig. 16.
The ramp, step nature of the surface resulted from the method used for the
free surface boundary condition; another run with a coarser representation
of the surface gave the same answers, implying that to the incident waves
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Fic. 16. A model of topograph relief. The ramp-step nature of the surface is a result
of the method used to treat the free surface boundary condition. Computational para-
meters: Ax = 2.0 m, Az = 0.0014 sec.

the surface is smooth. The resulting seismograms at several points along the
surface are shown in Fig. 17 for an initial Ricker wavelet and for a spike
approximation. It is obvious that the spike computations require only about
half as many time steps as the Ricker results. The spike results also show
much more clearly the second arrival due to reflection of the incident pulse
on the far side of the surface bump. The amplitude spectra and spectral
ratios for three input motions—two Ricker wavelets of differing spectral
content and the spike approximation—are given in Fig. 18. This figure
again shows the usefulness of the spike, for one run gives information over
a broader spectral band than the two Ricker runs. The small modulation
in the spike results is probably due to discreteness effects, as discussed in
Section ILE,I. The initial input motion was not corrected for these effects.
Apparently the difficulties in generating the initial displacements for a spike-
like input are not as important as they might seem at first.

The problem defined in Fig. 16 was also solved, unintentionally, with a
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e i - I -
0 10 20 30 40
TIME (1072 SEC)
FiG. 17. Computed seismograms at points shown in Fig. 16 for two types of input
motion: Ricker wavelet and impulse approximation. Some of the high frequency oscilla-
tions are due to dispersion.
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F1G. 18. Results for the model of topographical relief. Lower: The amplitude spectrum
of the input motion—two Ricker wavelets (A, B) and an impulse approximation (C).
Upper: The resulting spectral ratios, normalized to the surface motion obtained if no
topography were present, at sites 1 and 10 (see Fig. 16; site 10 is just to the right of site 9).
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spike representation possessing a discontinuous second derivative [i.e., the
third difference of Gj; see Eq. (21)]. Even though the breadth of the input
pulse was the same as in the previous spike run (L/Az = 4), the results were
distinctly poorer.
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