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Orientation-Independent Measures of Ground Motion

by David M. Boore, Jennie Watson-Lamprey, and Norman A. Abrahamson

Abstract The geometric mean of the response spectra for two orthogonal hori-
zontal components of motion, commonly used as the response variable in predictions
of strong ground motion, depends on the orientation of the sensors as installed in the
field. This means that the measure of ground-motion intensity could differ for the
same actual ground motion. This dependence on sensor orientation is most pro-
nounced for strongly correlated motion (the extreme example being linearly polarized
motion), such as often occurs at periods of 1 sec or longer. We propose two new
measures of the geometric mean, GMRotDpp, and GMRotIpp, that are independent
of the sensor orientations. Both are based on a set of geometric means computed
from the as-recorded orthogonal horizontal motions rotated through all possible non-
redundant rotation angles. GMRotDpp is determined as the ppth percentile of the
set of geometric means for a given oscillator period. For example, GMRotD00,
GMRotD50, and GMRotD100 correspond to the minimum, median, and maximum
values, respectively. The rotations that lead to GMRotDpp depend on period, whereas
a single-period-independent rotation is used for GMRotIpp, the angle being chosen
to minimize the spread of the rotation-dependent geometric mean (normalized by
GMRotDpp) over the usable range of oscillator periods. GMRotI50 is the ground-
motion intensity measure being used in the development of new ground-motion pre-
diction equations by the Pacific Earthquake Engineering Center Next Generation
Attenuation project.

Comparisons with as-recorded geometric means for a large dataset show that the
new measures are systematically larger than the geometric-mean response spectra
using the as-recorded values of ground acceleration, but only by a small amount (less
than 3%). The theoretical advantage of the new measures is that they remove sensor
orientation as a contributor to aleatory uncertainty. Whether the reduction is of prac-
tical significance awaits detailed studies of large datasets. A preliminary analysis
contained in a companion article by Beyer and Bommer finds that the reduction is
small-to-nonexistent for equations based on a wide range of magnitudes and dis-
tances. The results of Beyer and Bommer do suggest, however, that there is an
increasing reduction as period increases. Whether the reduction increases with other
subdivisions of the dataset for which strongly correlated motions might be expected
(e.g., pulselike motions close to faults) awaits further analysis.

Introduction

Equations for predicting the ground shaking from earth-
quakes are usually developed for response spectra corre-
sponding to horizontal shaking. Records of horizontal
ground shaking are obtained from orthogonally oriented
components, and thus two records are available at each site.
There are many ways to use the two horizontal components
in ground-motion prediction equations (e.g., Douglas, 2003).
In the derivations of several widely used prediction equa-
tions these two records are combined into a single measure
of shaking intensity by forming the geometric mean of the
response spectra for each horizontal component (e.g., Abra-

hamson and Shedlock, 1997), sometimes with a correction
of the standard deviation of the predicted motions to ap-
proximate a randomly chosen component of ground motion
(Boore et al., 1997; Boore, 2005a). One advantage of the
geometric mean is that the aleatory uncertainty in ground-
motion prediction equations using this measure of ground
motion is less than for almost all other measures (Beyer and
Bommer, 2006). The geometric mean of the as-recorded mo-
tions has one potentially important drawback, however: it is
not invariant to the orientation of the sensors. As an extreme
case, consider noise-free, linearly polarized ground motion.
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If one of the sensors happened to be aligned with the direc-
tion of polarization, the response spectrum from the recorded
motion on the orthogonal sensor would be zero, and the geo-
metric mean would be zero, regardless of the amplitude of
the polarized ground motion. This might be an important
consideration close to faults, where rupture directivity and
radiation pattern can produce strongly correlated motions, in
particular at periods of 1 sec or longer (Spudich et al., 2004).
Because obtaining a response spectrum is not a linear opera-
tion on a time series (the response spectrum of the sum of
two time series is not equal to the sum of the response spectra
for each time series), the sensitivity to sensor orientation is
also shared by almost all other measures of ground-motion
intensity.

Orientation-independent combinations of the two hori-
zontal components have been used in seismology for mea-
sures of Fourier spectral amplitudes (e.g., Shoja-Taheri and
Bolt, 1977; Lu et al., 1992; Steidl, 1993; Steidl et al., 1996)
and Arias intensity (Arias, 1970), but because it is a nonlin-
ear operation, response spectra cannot be derived directly
from these “rotary spectra” (to use Gonella’s [1972] term).
In this article, we describe new measures of ground-motion
intensity that are independent of the as-recorded sensor ori-
entations. These new measures are obtained by computing
the geometric means of response spectra for all nonredun-
dant rotations of a given pair of orthogonal, horizontal-
component-recorded motions, and then by finding the geo-
metric mean corresponding to a certain percentile of the
resulting set of geometric means. We call these new mea-
sures “GMRotDpp” and “GMRotIpp”, where “pp” signifies
the percentile, most commonly “50.” Using these new mea-
sures will remove sensor orientation as a component of ale-
atory uncertainty, which could be important in probabilistic
seismic-hazard calculations of ground motions with very
small annual frequencies of exceedance (e.g., Bommer et al.,
2004).

Dependence of Geometric-Mean Ground-Motion
Intensity on Sensor Orientation: an Illustration

As an illustration of the variability in response spectral
amplitude that can occur, depending on the orientation of
the orthogonal horizontal sensors, consider the recording of
the 1971 San Fernando, California, earthquake obtained at
Pacoima Dam. We chose this record for no particular reason,
except that it does have a strong pulse in velocity and thus
is a good illustration of the problem with the standard way
of combining the two components. None of the contributions
in this article depend on the use of this one recording. We
processed the acceleration time series by applying an acausal
low-cut filter with a 0.1-Hz corner frequency. The as-
recorded orientations of the horizontal components were
164� and 254�. We show in Figure 1 what the velocity time
series would have looked like if the sensors had been ori-
ented in the 242� and 332� or 197� and 287� directions in-
stead (corresponding to rotation angles of 78� and 33�, re-

spectively). These angles were chosen because they give the
maximum and the minimum geometric means at a period of
1.0 sec respectively. Note that the maximum geometric mean
(time series in left column) corresponds to the velocity pulse
being more-or-less equally distributed between the two hor-
izontal components, whereas the minimum geometric mean
occurs when the pulse is primarily on one component (time
series in right column). The geometric-mean response spec-
tra for various rotations are shown in Figure 2. The spectra
for the rotation angles used to give the velocity time series
in Figure 1 are shown by the unbroken black lines, and the
spectra that used period-dependent rotation angles, chosen
to minimize and maximize the geometric means at each os-
cillator period, are shown with the gray lines. Note that the
spectra using the period-independent rotation angle giving a
minimum at T � 1.0 sec corresponds to the maximum pos-
sible geometric-mean response spectrum for periods greater
than about 4.0 sec. This means that if the sensors had been
placed with an orientation 33� clockwise relative to the ac-
tual orientation, the geometric mean would have been the
smallest of those from all possible sensor orientations for
periods from 0.8 sec to 1.3 sec and the largest possible for
periods from 4.0 sec to at least 10 sec. Note also that the
ratio of maximum to minimum geometric-mean response
spectra is close to 2 for periods near 1 sec and 6 sec. This
means that the same ground motion could have given a
factor-of-2 difference in the ground-motion intensity mea-
sure, depending on the orientation of the sensors as installed
in the field.

The sensitivity of the geometric mean to the rotation
angle depends on the correlation between components. A
simple derivation gives the following equation for the ratio
of the geometric mean to the response spectral amplitude on
the as-recorded component with the largest response ampli-
tude:

4 2 2 0.25GM(h)/RS � [(1 � n )(cos(h)sin(h)) � n ] , (1)max

where h is the rotation angle relative to the as-recorded com-
ponent with the largest response spectrum, and n is the ratio
of the response spectra from the two as-recorded compo-
nents (assumed to be statistically independent). This equa-
tion is exact when n � 0.0. Figure 3 shows the geometric
mean for the example motion recorded at Pacoima Dam for
four oscillator periods, where the same range of ordinates (a
factor of 2) is used for each graph. Also shown is the theo-
retical result from equation (1), where the ratio has been
normalized to equal the observed maximum geometric
mean; the theoretical result is shown for n � 0.0 and n �
0.2. The best agreement between theory and observation is
for an oscillator period of 1.0 sec. This is near the period of
the large velocity pulse (Fig. 1). The spread of geometric
means decreases as the correlation between components de-
creases. The median of the geometric means over the range
of rotation angles is given by the horizontal gray lines. Note
that the median is closer to the maximum geometric mean
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Figure 1. Velocity time series derived from acceleration times series, rotated into
an azimuth giving the maximum (left column) and the minimum (right column)
geometric-mean response spectra at a period of 1.0 sec. The new sensor orientations
are indicated, as are the rotation angles (in parentheses) used to obtain the new orien-
tations. The acceleration records were obtained from Pacoima Dam during the 1971
San Fernando, California, earthquake. The orientations of the original recordings were
164� and 254�. A time-domain acausal low-cut filter with a corner frequency of 0.1 Hz
and a low-frequency response going as f 8 was applied to both of the as-recorded ac-
celeration time series before rotation. The time axis includes 30 sec of pre-event zeros
added to the time series before filtering (see Boore, 2005b).

than it is to the minimum geometric mean for the T � 1.0 sec
results. The theoretical results show why this is so: strongly
correlated motions will have one rotation angle for which
the geometric mean is zero or close to zero, but the minimum
is a strong function of the correlation and occurs over a
narrow range of rotation angles. The maximum is not a
strong function of the correlation between components, and
thus any fractile measure of the geometric mean will be
closer to the maximum than to the minimum geometric
mean.

There is a periodicity of 90� in the geometric means as
a function of rotation angles. Because of the periodicity, the
nonredundant set of rotation angles spans a range from 0� to
90�. It is easy to see that this is so by considering the defi-

nition of the geometric mean of the response spectra of two
horizontal and orthogonal components (call them H1 and
H2):

GM � RS(H )RS(H ) , (2)� 1 2

where GM is the geometric mean, RS is any type of response
spectrum computed for acceleration time series Hi. Rotating
the two components by 90� will mean that within a plus or
minus sign difference, H1 r H2 and H2 r H1, with the result
that GM will be the same (RS is the same for two time series
differing only by a 180� phase shift). Because of this peri-
odicity, any fractile of the distribution of geometric means
over any set of rotation angles spanning a continuous inter-
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Figure 2. Geometric-mean 5%-damped response spectra for the as-recorded hori-
zontal motions at Pacoima Dam for the 1971 San Fernando earthquake and for various
rotations. Spectra are shown for period-independent rotation (rot) angles that minimize
and maximize the geometric mean at a period of 1.0 sec. Spectra are also shown for
which a different rotation angle is used for each period to minimize and maximize the
geometric-mean spectra. Both pseudo-acceleration response spectra (PSA) and dis-
placement response spectra (SD) are shown, to better see the relations between the
various measures at short periods and long periods. In the displacement response spec-
tra, note the switch of the single-rotation minimum and maximum geometric mean at
periods longer than 3.5 sec.

val of 90� will be the same, which means that such a measure
will be independent of the as-recorded orientation of the
components. This is the basis for our proposed measures of
ground motion, which we expand on in the next section.

GMRotDpp: Orientation-Independent Geometric
Mean, Using Period-Dependent Rotation Angles

Motivated by the dependence of the geometric mean on
rotation angle, we define new measures of ground motion as
a certain percentile value of the set of geometric means ob-
tained using all nonredundant rotations between 0 and 90
degrees. We call these measures GMRotDpp, where “GM”
stands for “geometric mean,” “Rot” indicates that rotations
over all nonredundant angles are used, “D” indicates that
period-dependent rotations are used, and “pp” indicates the
percentile value used for the measure (e.g., “00,” “50,” and
“100” correspond to minimum, median, and maximum val-
ues, respectively; the median value will probably be the
commonly used measure, in which case the new measure is
GMRotD50). Here is a simple algorithm for computing
GMRotDpp.

1. Compute the oscillator time series of each as-recorded
horizontal component of motion for the usable range of

oscillator period Ti (the range depends on the processing
used to remove noise from the acceleration records). Call
these oscillator time series Osc1(t, Ti, g, 0) and Osc2(t,
Ti, g, 0), where g is the oscillator damping (we used 5%
for the examples in this article), and “0” indicates the
rotation angle.

2. Set the rotation angle h to 0.0.
3. Form the oscillator time series for the rotation angle h by

using linear combinations of the oscillator time series of
the as-recorded motions:

Osc (t,h) � Osc (t, 0) � cos(h)1 1

� Osc (t, 0) � sin(h) (3a)2

Osc (t,h) � �Osc (t, 0) � sin(h)2 1

� Osc (t, 0) � cos(h), (3b)2

where for simplicity of notation we have suppressed the
arguments Ti and g.

4. Find the largest absolute amplitude of each oscillator time
series; these correspond to the response spectral values
for period Ti (this is the step that makes the computation
of response spectra a nonlinear operation on the time
series).

5. Compute the geometric mean as in equation (2) and store
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Figure 3. Geometric means of the motions recorded at Pacoima Dam for the 1971
San Fernando earthquake, for four periods, as a function of rotation angle. The hori-
zontal gray line is the 50th-percentile value of the geometric mean, taken over all
nonredundant rotation angles (0–90�)—we call this GMRotD50. The dashed curves
show the predictions based on equation (1), adjusted to have a minimum at the angle
corresponding to the minimum of the observed geometric means and a maximum am-
plitude equal to that of the observed geometric means. Equation (1) is exact only when
the motion is linearly polarized (so that ratio of the smaller to larger response spectra
n on the two horizontal components is 0.0).

in an array giving the geometric mean as a function of
rotation angle and period for a fixed value of damping
(GM(h, Ti)).

5. Increment the rotation angle h by Dh (we find that a one-
degree increment for the rotation angle is sufficient).

6. Repeat steps 3 through 5 until the rotation angle is equal
to or greater than 90�.

7. Rank the set corresponding to GM(h, Ti) for all values of
h and a fixed value of Ti, from smallest to largest values.

8. Set GMRotDpp to the value of GM corresponding to the
specified ppth percentile value. The percentile could be
anything (such as the 16th and 84th percentiles), but
probably the most commonly used percentile would be
50, which represents the median value (for an even num-
ber of rotations we average the sorted values on either
side of the midpoint, so with Dh � 1� there are 90 non-
redundant rotations, and the 50th percentile value is cal-
culated as the average of the 45th and 46th ranked val-
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Figure 4. Rotation angle corresponding to the
maximum and minimum geometric means; the angle
for the 50th percentile geometric mean GMRotD50
will be between the rotation angles shown. (The an-
gles have been “unwrapped,” which is why their
range exceeds 90�.)

ues). GMRotD50 for the example case is shown by the
horizontal gray lines in Figure 3. Because of the 90� pe-
riodicity, GMRotDpp will be independent of the original
orientation of the sensors.

The preceding algorithm requires a program that returns
the oscillator response as a time series. If all that is available
is a program giving response spectral amplitudes, the algo-
rithm is modified by using the ground-motion acceleration
time series rather than the oscillator time series in step 3 and
computing response spectral amplitudes of the rotated ac-
celeration time series in step 4. This is somewhat slower than
the original algorithm.

GMRotIpp: Orientation-Independent Geometric
Mean, Using Period-Independent Rotation Angle

Although the definition of GMRotDpp satisfies our re-
quirement that it is independent of as-recorded sensor ori-
entations, it has the unappealing feature that a single rotation
will not produce two time series for which the geometric
mean of the individual response spectra equals GMRotDpp
for all periods. This is clearly seen in Figure 4, which shows
the rotation angles corresponding to GMRotD00 and
GMRotD100. The rotation angles in the 0.6-sec to 3-sec
period band, roughly the band corresponding to the velocity
pulse in Figure 1, show a systematic decrease (perhaps re-
lated to the progression of faulting on the rupture surface as
well as the distribution of fault slip). Dynamic analysis of
structures requires a time series of acceleration, and thus it
would be useful to have a ground-motion intensity measure
that was not only independent of sensor orientation, but also
corresponds to a single rotation of the as-recorded motions.
The rotation of the as-recorded motions by this angle would
give a single time series of acceleration that has the proper
value of the geometric mean. We have devised a scheme to
do this, as given in the following steps.

1. Compute GMRotDpp for the usable range of oscillator
periods (where the lowest frequency is controlled by the
processing required to remove long-period noise).

2. For each oscillator period normalize the set of geometric
means for all rotation angles by GMRotDpp for each pe-
riod. The normalized geometric means for the example
case are shown by the gray curves in the upper graph in
Figure 5, one curve for each of 200 oscillator periods.

3. Compute the penalty function defined by the equation:

h1 2penalty(h) � [GM(h,T )/GMRotDpp(T ) � 1] ,� i iN i�1per

(4)

where the range of usable periods extends from Tl to Th,
GM (h, Ti) is the geometric mean of the response spectra
for period Ti computed for rotation angle h, and
GMRotDpp (Ti) is the ppth percentile value of GM (h,

Ti) over all nonredundant rotation angles, as previously
defined (we have only done this computation for pp �
50, which we expect to be the most commonly used case,
but we, have kept the description general in case there is
a need to compute the measure for some other value of
pp). This penalty function is shown in the bottom graph
of Figure 5 for the example case.

4. Find the rotation angle corresponding to the minimum of
the penalty function, hmin (58� for the example case in
Fig. 5).

5. Rotate the as-recorded motions by this angle.
6. Compute the geometric-mean response spectra for the ro-

tated time series. We call the resulting measure of strong
motion “GMRotIpp,” where the “I” means that the rota-
tion angle is independent of period. Using the terminol-
ogy in the equation (4), we have

GMRotIpp(T ) � GM(h , T ). (5)i min i

The selection of hmin seeks to avoid extreme variations
away from the desired percentile value over all periods. In
particular, for GMRotI50 the procedure avoids the very
small geometric means associated with strongly correlated
motions. For the example case, the motion on both horizon-
tal components at shorter periods is essentially uncorrelated
and the geometric mean shows little azimuthal variation
(e.g., Fig. 3 for 0.1 sec). The greatest azimuthal variation in
the geometric mean occurs for motion that is strongly po-
larized (e.g., Fig. 3 for 1.00 sec), and thus it is periods of
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Figure 5. Construction of the GMRotI50 measure
of ground-motion intensity. The top graph shows the
geometric means for 200 individual periods logarith-
mically spaced from 0.01 sec to 10.0 sec, normalized
by the 50th percentile value for each period
(GMRotD50), as a function of rotation angle. The
bottom graph shows the penalty function constructed
from the 200 normalized geometric means. The min-
imum of the penalty function gives the period-
independent rotation angle (58�, indicated by the ver-
tical dashed line) used to compute the geometric mean
that we call “GMRotI50.”

Figure 6. GMRotI50 for 5%-damped oscillators,
for various maximum periods (Th) in the sum defining
the penalty function (equation 4). The curves for
Th � 2.0 sec and 5.0 sec are almost identical, as are
those for Th � 6.0 sec and 20.0 sec.

greatest correlation between components that control the
value of hmin. The strong linear polarization tends to occur
at moderate to long periods, although the periods at which
it occurs can be quite variable (being near 1 sec for the Pa-
coima Dam recording of the 1971 San Fernando earthquake
but periods on the order of 10 sec for other earthquakes,
such as the 1999 Hector Mine earthquake ([Boore et al.,
2002] and the 2003 Bingöl earthquake [Akkar et al., [2005]).

The sensitivity to strongly correlated motions at longer
periods can make GMRotIpp dependent on the highest value
of period included in the sum defining the penalty function.
This is shown in Figures 6 and 7. Figure 6 shows GMRotI50
for four values of Th: 2.0, 5.0, 6.0, and 20.0 sec. An abrupt
change in GMRotI50 takes place for Th between 5.0 sec and

6.0 sec (the change actually occurs between 5.25 sec and
5.5 sec). The reason for this is related to the relative size of
the two minima in the penalty function. The absolute mini-
mum in the penalty switches from the minimum around 58�
for Th of 6 sec and longer to the minimum at 5� for shorter
periods. The change takes place abruptly as Th is decreased
from 6 sec to 5 sec. Although not shown here, the rotation
angles corresponding to the two minima are quite insensitive
to Th, and thus the values of GMRotI50 are similar for values
of Th either less than or greater than the transition period
(Fig. 6). The abrupt change in the relative size of the two
minima is related to the large difference in minimum and
maximum geometric means for periods around the peak in
the displacement response spectrum at 6 sec (see Fig. 2). To
avoid the sensitivity of GMRotIpp to Th, it is important to
choose Th large enough so that all peaks in the displacement
response spectrum are included and to have enough values
of the oscillator period to define each peak in the response
spectrum.

The measures of the geometric mean discussed in this
article for pp � 50 are shown in Figure 8 for the example
case of the Pacoima Dam recording of the 1971 San Fer-
nando earthquake. The measures GMRotD50 and GM-
RotI50 are similar. As discussed earlier, GMRotD50 is
closer to the maximum geometric mean (GMRotD100) than
it is to the minimum geometric mean (GMRotD00), in par-
ticular for the more strongly correlated longer-period mo-
tions.

To study the relation of GMRotI50 to both GMRotD50



Orientation-Independent Measures of Ground Motion 1509

Figure 7. The penalty functions for Th � 5.0 sec
and 6.0 sec. The penalty functions were computed for
180 and 186 individual periods logarithmically
spaced from 0.01 sec to 5.0 sec and from 0.01 sec to
6.0 sec for Th � 5.0 sec and 6.0 sec, respectively.
The vertical dashed lines indicate the rotation angles
giving the absolute minimum for each penalty func-
tion. These rotation angles were used to compute
GMRotI50.

and to the traditional geometric mean from as-recorded mo-
tions for more than the one example record, we have com-
puted GMRotD50 and GMRotI50 for more than 3500 re-
cords contained in the dataset being used by the PEER NGA
project (see the Conclusions section for the web sites de-
scribing the project and from which the data can be ob-
tained). For Th we used the maximum usable oscillator pe-
riod for each record, as determined from the filters used in
processing the data. The natural logarithm of the ratio of
GMRotI50 to GMRotD50 has a mean of approximately zero
over all periods and a standard deviation less than 0.05 (con-
verted to multiplicative factors, these are shown in Fig. 9).
GMRotI50 is systematically higher than the as-recorded
ground motion (as shown in Fig. 10), but only by a small
amount (less than a factor of 1.03 for the large dataset we
studied). The systematic difference is due to the skewed dis-

tribution of the natural logarithm of the geometric mean with
respect to rotation angle.

Conclusions and Discussion

We have defined new measures of ground-shaking in-
tensity that combine response spectra for horizontal com-
ponent recordings in such a way that the measures are in-
dependent of the as-installed orientation of the horizontal
sensors, the only assumption being orthogonality of the sen-
sors. We define two measures: GMRotDpp, for which the
rotation angle required to give the ppth percentile value of
all geometric means over the set of nonredundant rotation
angles is period dependent, and GMRotIpp, which although
requiring GMRotDpp in its computation, corresponds to the
geometric-mean response spectra of the two as-recorded
horizontal components after a single period-independent ro-
tation of the motions. GMRotI50 has been chosen as the
dependent variable in updating the ground-motion prediction
equations of Abrahamson and Silva (1997), Boore et al.
(1997), Campbell and Bozorgnia (2003), and Sadigh et al.
(1997), as part of a multiyear project sponsored by the
Pacific Earthquake Engineering Research Center (the PEER
Next Generation Attenuation, [NGA] project—see http://
peer.berkeley.edu/lifelines/nga.html and http://peer.
berkeley.edu/nga/index.html). Although no examples are
given, GMRotDpp and GMRotIpp with pp � 16 and pp �
84 might be useful in assessing the variability in response
for a given record.

The theoretical advantage of the new measures is that
they remove sensor orientation as a contributor to aleatory
uncertainty. The main disadvantage is that they require more
computation time than the geometric mean of the as-
recorded motions (but the computation requirements are not
onerous—for the example records used in this article it took
11.7 sec on a 3-GHz PC, without optimization of the com-
piled Fortran program, to compute GMRotD00, GMRotD50,
GMRotD100, and GMRotI50 for 200 oscillator periods).
Another possible disadvantage to GMRotDpp is that the pe-
riod-dependent rotations might seem to obscure the physical
interpretation of the measure, a disadvantage not shared by
GMRotIpp. On the other hand, in some situations the direc-
tion of polarization could change as a function of period, for
physical reasons such as rupture propagation along a finite
fault or wave arrivals with varying polarizations and fre-
quency content, as might be produced by the distribution of
seismic energy into different types of waves and by path
complexities that produce lateral refractions. If the polari-
zation angle changes with period (as seems to be the case in
the example studied here—see Fig. 4), a single rotation angle
might not be appropriate. A possible disadvantage of
GMRotIpp is that it requires a choice of a period range for
its computation (see equation 4) and care must be taken to
make sure that Th is large enough to capture the peaks in the
displacement response spectra.

Whether the reduction in the aleatory uncertainty is of
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Figure 8. Comparison of GMRotI50 and GMRotD50. Also shown by the gray
curves are GMRotD00 and GMRotD100 (the minimum and maximum geometric
means using period-dependent rotation angles).

Figure 9. Mean and standard deviation of the
natural logarithm of the ratio of GMRotI50 to
GMRotD50 for the PEER NGA database, converted to
multiplicative factors.

Figure 10. Mean and standard deviation of the
natural logarithm of the ratio of GMRotI50 to the geo-
metric-mean response spectra from the as-recorded
ground motion for the PEER NGA database, converted
to multiplicative factors.

practical significance awaits detailed studies of large data-
sets. The first such analysis, in the companion paper by
Beyer and Bommer (2006), finds for all periods greater than
0.03 sec that the aleatory uncertainty obtained from fitting a
simple ground-motion prediction equation to a subset of the
PEER NGA dataset is smaller when combining the two hor-

izontal components using GMRotD50 than when using any
other procedure for combining the components. The reduc-
tion, however, is very small (less than 1%, from figure 7 in
Beyer and Bommer), although the reduction does seem to
be increasing with increasing period. This period depen-
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dence of the reduction suggests that the new measures will
be most useful in situations for which strongly correlated
motions might be expected (e.g., pulselike motions close to
faults). This may be particularly important in deriving cor-
rection factors to account for directivity or fault-normal and
fault-parallel effects (e.g., Somerville et al., 1997; Abraham-
son, 2000; Howard et al., 2005). Assessing this possibility
requires analysis of subsets of large databases, as were used
by Beyer and Bommer.
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