
U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY

BOREHOLE P- AND S-WAVE VELOCITY AT THIRTEEN STATIONS IN SOUTHERN CALIFORNIA

by

James F. Gibbs¹, David M. Boore¹, John C. Tinsley¹, and Charles S. Mueller²

U.S. Geological Survey Open-File Report OF 01-506

This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

¹Menlo Park, CA 94025 ²Denver, CO 80225

U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY

BOREHOLE P- AND S-WAVE VELOCITY AT THIRTEEN STATIONS IN SOUTHERN CALIFORNIA

by

James F. Gibbs¹, David M. Boore¹, John C. Tinsley¹, and Charles S. Mueller²

U.S. Geological Survey Open-File Report OF 01-506

This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

¹Menlo Park, CA 94025 ²Denver, CO 80225

TABLE OF CONTENTS

T , 1 ,.	Page
Introduction	
P- and S -Wave Travel-Time Data	. 4
Velocity Profiles	4
Summary Velocity Profiles	
Acknowledgments	
References	
	10
Appendix A–Detailed Results:	
Cerritos College Gymnasium	. 14
Cerritos College Physical Science Bldg	. 21
Cerritos College Police Bldg	. 28
Corps of Engineer Station	. 35
Hoover School	. 42
Lincoln School	. 49
Lincoln School Whittier	. 56
Los Alisos Adult School	. 63
Olive Junior High School	. 70
San Bernadino Fire Station	. 77
Santa Anita Golf Course	. 84
South Western Academy	
St. Paul High School	. 98
Appendix B–Poisson's Ratios:	
Cerritos College Gymnasium	. 105
Cerritos College Physical Science Bldg.	. 106
Cerritos College Police Bldg.	. 107
Cerritos College Police Bldg	. 108
Hoover School	. 109
Lincoln School	. 110
Lincoln School Whittier	. 111
Los Alisos Adult School	
Olive Junior High School	
San Bernadino Fire Station	. 114
Santa Anita Golf Course	. 115
South Western Academy	
St. Paul High School	

BOREHOLE P- AND S-WAVE VELOCITY AT THIRTEEN SITES IN SOUTHERN CALIFORNIA

by

James F. Gibbs, David M. Boore, John C. Tinsley, and Charles S. Mueller

INTRODUCTION

The U.S. Geological Survey (USGS), as part of a program to aquire seismic velocity data at locations of strong-ground motion in earthquakes (e.g. Gibbs, et al., 2000), has investigated thirteen additional sites in the Southern California region. Of the thirteen sites, twelve are in the vicinity of Whittier, California and one is located in San Bernardino, California.

Several deployments of temporary seismographs were made after the Whittier Narrows, California earthquake of 1 October 1987 (Mueller et al., 1988). A deployment, between 2 October and 9 November 1987, was the motivation for selection of six of the drill sites. Temporary portable seismographs at Hoover School (HOO), Lincoln School (LIN), Corps of Engineers Station (NAR), Olive Junior High School (OLV), Santa Anita Golf Course (SAG) and Southwestern Academy (SWA), recorded significant aftershock data. These portable sites with the exception of Santa Anita Golf Course were co-sited with strong-motion recorders.

Stations at HOO, Lincoln School Whittier (WLB), Saint Paul High School (STP), Alisos Adult School (EXC), Cerritos College Gymnasium (CGM), Cerritos College Physical Science Building (CPS), and Cerritos College Police Building (CPB) were part of an array of digital strong-motion stations deployed from "bedrock" in Whittier to near the deepest part of the Los Angeles basin in Norwalk. Although development and siting of this new array (patially installed at the time of this writing) was generally motivated by the Whittier Narrows earthquake, these new sites (with the exception of HOO) were not part of any Whittier Narrows aftershock deployments. A similar new digital strong-motion site was installed at the San Bernardino Fire Station during the same time frame.

Velocity data were obtained to depths of about 90 meters at two sites, 30 meters at seven sites, and 18 to 25 meters at four sites. Lithology data from the analysis of cuttings and samples, was obtained from the two 90-meter deep holes and from five of the shallower holes to supplement the velocity interpretation. The two 90-meter boreholes (SB1, CPB) have been instrumented with borehole seismometers for continuous monitoring of earthquake activity (Rogers, et al., 1998). No drill samples or cuttings were obtained from the other six sites but driller's logs were scanned for major changes noted there. The velocity models at those sites were interpreted using only the measured data and major changes in the driller's log as noted above.

The sites are shown in Figure 1 and listed in Table 1, which gives references to information regarding the strong-motion data. Several hundred strong-motion records of the main-shock were written by this moderate size earthquake ($M_L = 5.9$) making it important from a scientific and engineering prospective (Brady et al., 1988, Shakal et al., 1988).

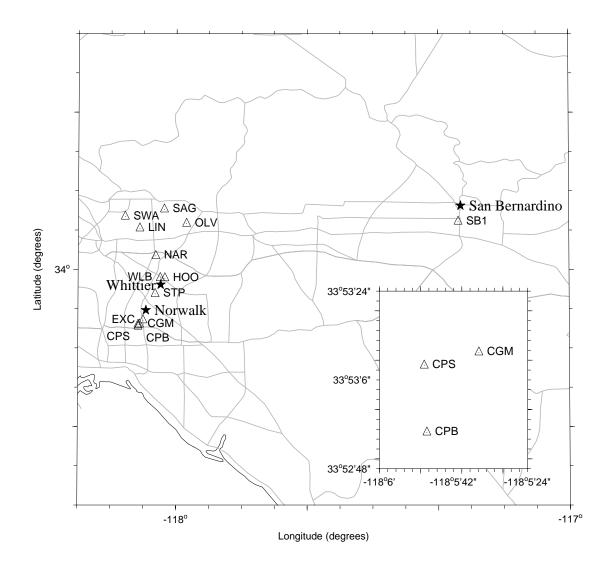


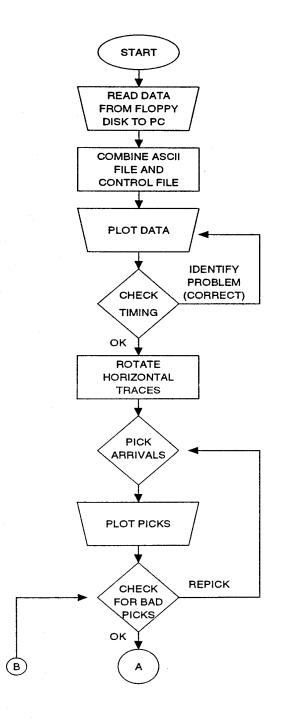
Figure 1. Regional map showing the locations of boreholes (triangles) included in this report. Inset shows the locations of the Cerritos College boreholes at an expanded scale. Locations of roads and cities are approximate.

Table 1. Site names, three letter codes, and coordinates using the North American Datums of 1927 (NAD27) and 1983 (NAD83).

Station	StaCode	Lat:NAD27	Long:NAD27	Lat:NAD83	Long:NAD83
Cerritos College Gymnasium	CGM	33.88663	-118.09329	33.88664	-118.09419
Cerritos College Physical Sci. Bldg.	CPS	33.88589	-118.09698	33.88590	-118.09788
Cerritos College Police Bldg.	CPB	33.88212	-118.09680	33.88213	-118.09770
Corps of Engineers Station $*$	NAR	34.03219	-118.05225	34.03220	-118.05315
Hoover School *	HOO	33.98491	-118.02889	33.98492	-118.02979
Lincoln School *	LIN	34.09043	-118.09305	34.09044	-118.09395
Lincoln School Whittier	WLB	33.98535	-118.04061	33.98536	-118.04151
Los Alisos Adult School	EXC	33.89559	-118.08428	33.89560	-118.08518
Olive Junior High School *	OLV	34.10073	-117.97409	34.10074	-117.97499
San Bernardino Fire Station	SB1	34.10534	-117.28201	34.10535	-117.28289
Santa Anita Golf Course	SAG	34.13096	-118.03074	34.13097	-118.03164
South Western Academy $*$	SWA	34.11533	-118.13046	34.11534	-118.13136
St. Paul High School	STP	33.95158	-118.05369	33.95159	-118.05459

* Strong-motion accelerograph located near borehole (see location maps in Appendix A).

P- AND S-WAVE TRAVEL-TIME DATA


Shear waves were generated at the ground surface by an air-powered horizontal ram (Liu, *et al.*, 1988) striking an anvil at either end of an aluminum channel 2.3 meters long. The ram was driven first in one direction and then in the other to generate pulses of opposite polarity. A switch attached to the shear source triggered the recorder and established the reference for the timing of arrivals. *P*-waves were generated by striking a steel plate with a sledge hammer. The recorder was triggered by a switch attached to the handle of the sledge hammer. *P*- and *S*-wave sources were offset from the borehole (same horizontal distance but different locations) to minimize the effect of waves traveling down the grout surrounding the casing. The source offsets varied from 2 to 4 meters depending on available space and depth of the borehole. Shallow holes (30 meters or less) were offset 2 or 3 meters.

Downhole measurements were made at 2.5-meter intervals at ten locations and at 2-meter spacing at three of the shallower boreholes. The measurements were made by moving a three-component geophone to each depth and clamping it to the casing by an electrically-activated lever arm. A second three-component geophone was placed on the surface near the shear source used to verify timing of the triggered recorder. The data were recorded on diskettes using a 12-channel recording system.

VELOCITY PROFILES

The procedure for determining velocities is summarized in Figure 2. Because the orientation of the downhole geophone could not be controlled when moving from one depth to the next, the azimuth of the horizontal geophones relative to the source was unknown and changed with depth. To minimize the effects of those changes, the horizontal components were rotated to the direction that maximized the integral square amplitude within a time interval containing the shear wave (Boatwright *et al.*, 1986). *P*- and *S*-wave first-arrival times were determined from the time series displayed at each depth on a 20-inch computer screen. The *P*-wave arrival-time was obtained from the vertical trace, and the *S*-wave arrival-times were obtained from the average of the rotated horizontal traces for ram strikes in opposite directions. The arrivals were timed to the nearest millisecond, probably a realistic precision for clear arrivals uncontaminated by noise.

A trial set of layer boundaries was chosen for the S-wave model, based on the lithologic descriptions and geophysical logs at the two sites (CBP, SB1) where geologic information was available. At five sites (CGM, CPS, EXC, STP, WLB) simplified lithology, determined from drill cuttings, was used to supplement the velocity determinations. At the remaining six sites (NAR, HOO, LIN, OLV, SAG, SWA) the velocity models were determined without the benefit of lithology or electric logs. The travel-time data were fit in a least-squares sense by a model made up of constant velocity layers, taking into account refraction across the interfaces between layers. The travel times were weighted by the inverse of an assigned normalized variance. A normalized standard deviation of 1 was assigned to the clear arrivals and values up to 5 were assigned to the others. The residuals were examined, and layer boundaries were added, if necessary, to reduce large residuals or to remove systematic trends in the residuals. The *P*-wave travel time data were analyzed initially with the set of layer boundaries finally determined for the *S*-wave data. Layer boundaries were then added if needed to fit the data and deleted if not needed. Commonly, an additional layer

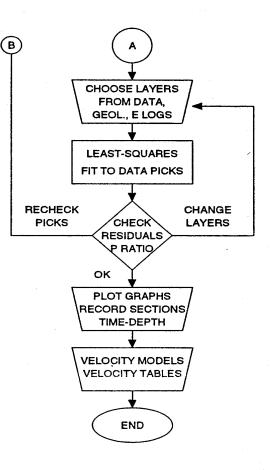


Figure 2. Flow-chart outlining the data processing and steps in the interpretation.

boundary corresponding to the top of the zone of water saturation was needed to fit the P-wave data.

Some of the dynamic Poisson's ratios σ , calculated with initial velocity models, resulted in ratios that were out of the accepted range of values (0.0–0.5). To obtain a value in the acceptable range we made minor adjustments to the velocities using one or more of the following procedures: repicking shallow arrivals (usually P arrivals because small changes in P travel-times have greater effect on σ), adding a shallow layer, and/or adjusting layer thickness to ensure that Poisson's ratio was in the range 0.0–0.5. In most cases the small changes were made in the P-wave velocities at shallow depths (for more details see, Gibbs, et al., 1999). Overall, the changes in velocity required to produce acceptable values of σ were small and were only in a few layers.

For example, at San Bernardino Fire Station several velocity models were tried to get Poisson's ratio into the accepted range. We were forced to average the P-wave velocity over the top 8.5 meters to get the ratio from a negative value to a value of 0.04. The preferred model in which the S-velocity follows the lithology (in general, the S-wave velocity is a better indicator of lithology than P-wave velocity) is included in Appendix A.

SUMMARY VELOCITY PROFILES

Figures 3-5 show the S-wave velocity profiles determined from the borehole measurements at the thirteen sites. The velocity profiles are plotted at the same scale for ease of comparison. Figures 6-8 show the P-wave velocity profiles for the same sites as Figures 3-5, respectively.

DESCRIPTION OF APPENDICES

Appendix A contains for each site: a location map, S- and P-wave time-series records, a time-depth plot, and tables giving arrival times and velocity values. The upper and lower bounds on the velocity plots show approximate 68 percent confidence limits. The bounds are not symmetrical because they are based on the inverse velocities in the layers. Appendix B contains tables of P- and S-wave velocity models and the Poisson's ratios obtained from those models.

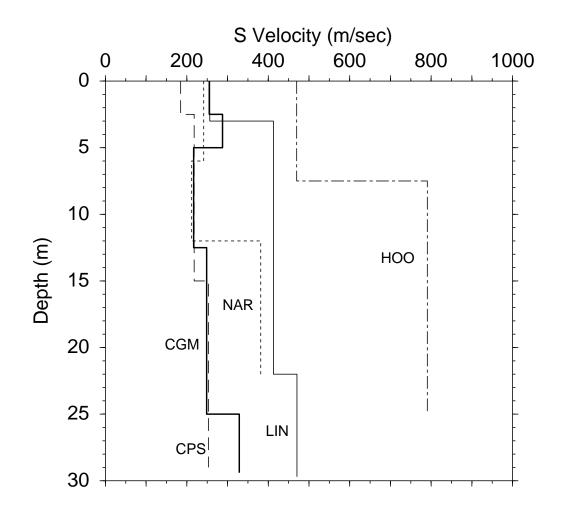


Figure 3. S-wave velocity models shown on the same figure for comparison.

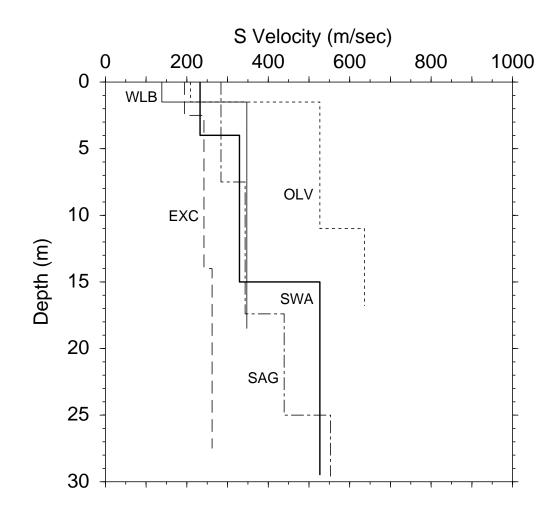


Figure 4. S-wave velocity models shown on the same figure for comparison.

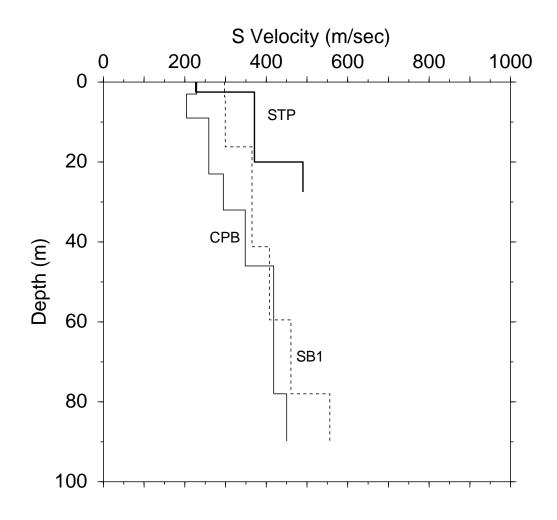


Figure 5. S-wave velocity models shown on same figure for comparison.

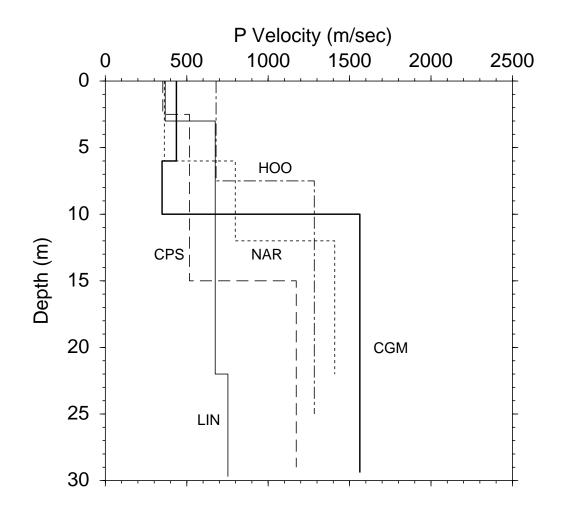


Figure 6. P-wave velocity models shown on the same figure for comparison.

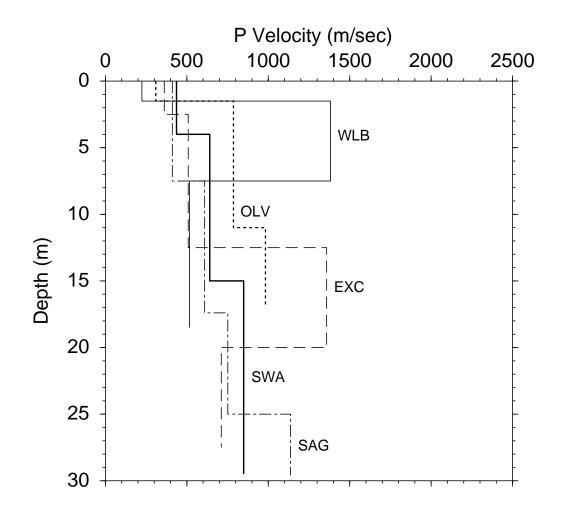


Figure 7. P-wave velocity models shown on the same figure for comparison.

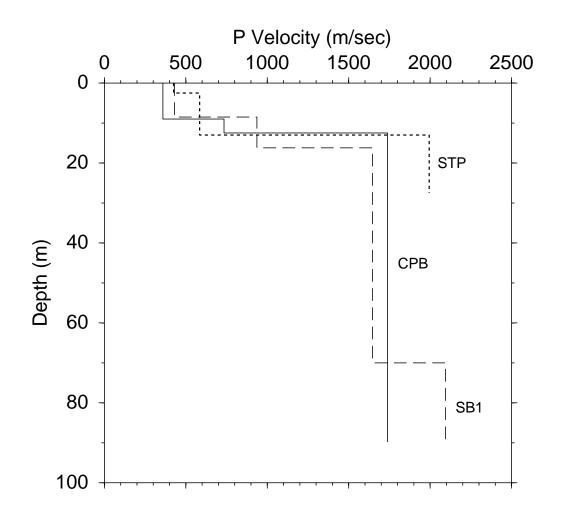


Figure 8. P-wave velocity models shown on the same figure for comparison.

ACKNOWLEDGMENTS

We could not have completed these studies without the assistance of many individuals who helped us to gain access to the sites, assisted with utilities clearances and granted permission to conduct the studies. These people include Michael Sebak at Cerritos College; Warren Thomas at Corps of Engineers Station; Margie Leon and Ray Rodriguez at Hoover School; Jack Feldman at Lincoln School; Stephen Finkle at Lincoln School Whittier; Mr. Hengler at Los Alisos Adult School; Daniel at Olive Junior High School; Richard McGreevy at San Bernardino Fire Station; Dave Cuellar, Terry Moeller, and Tom Dittmar at Santa Anita Golf Course; Charles Craig at South Western Academy; Father Robert Gallagher at St. Paul High School. We also thank Allen Foss of the U.S. Geological Survey for his help with the P- and S-wave logging.

REFERENCES

- Boatwright, John, Porcella, R., Fumal, T., Liu, Hsi-Ping, (1986), Direct estimates of shear wave amplification from a borehole near Coalinga, California: Earthquake Notes, v. 57, p. 8.
- Brady, A. G., Etheredge, E. C., and Porcella, R. L. (1988), The Whittier Narrows, California Earthquake of October 1, 1987, Prelininary assessment of strong ground motion records: Earthquake Spectra, v.4, no.1, p. 55-74.
- Gibbs, James F., Tinsley, John C., Boore, David M., and Joyner, William B., 1999, Seismic velocities and geological conditions at twelve sites subjected to strong ground motion in the 1994 Northridge, California, earthquake: a revision of OFR 96-740, U.S. Geological Survey, Open-File Report 99-446, 142p.
- Gibbs, James F., Tinsley, John C., Boore, David M., and Joyner, William B., 2000, Borehole velocity measuremnets and geological conditions at thirteen sites in the Los Angeles, California region: U.S. Geological Survey, Open-File Report OF 00-470, 118p.
- Liu, Hsi-Ping, Warrick, Richard E., Westerlund, Robert E., Fletcher, Jon B. and Maxwell, Gary L., 1988, An air-powered impulsive shear-wave source with repeatable signals: Bull. Seism. Soc. Am. v. 78, p. 355-369.
- Mueller, C., Dietel, C., Glassmoyer, G., Noce, T., Sembera, E., Spudich, P., and Watson, J., Digital Recordings of Aftershocks of the 1 October 1987 Whittier Narrows, California, Earthquake: U.S. Geological Survey, Open-File Report 88-688, 40p.
- Rogers, A., Mueller, C., Tinsley, J., and Koesterer, C., (1998), Instrumentation and geotechnical characteristics at two vertical strong motion arrays at Cerritos College, Norwalk, and downtown San Bernardino, California: U.S. Geological Survey, Open-File Report 98-346, 58p.
- Shakal, A., Huang, M. J., and Cao, T. Q. (1988), The Whittier Narrows, California Earthquake of October 1, 1987, CSMIP strong motion data: Earthquake spectra, v.4, no.1, p. 75-100.

APPENDIX—A Detailed Results

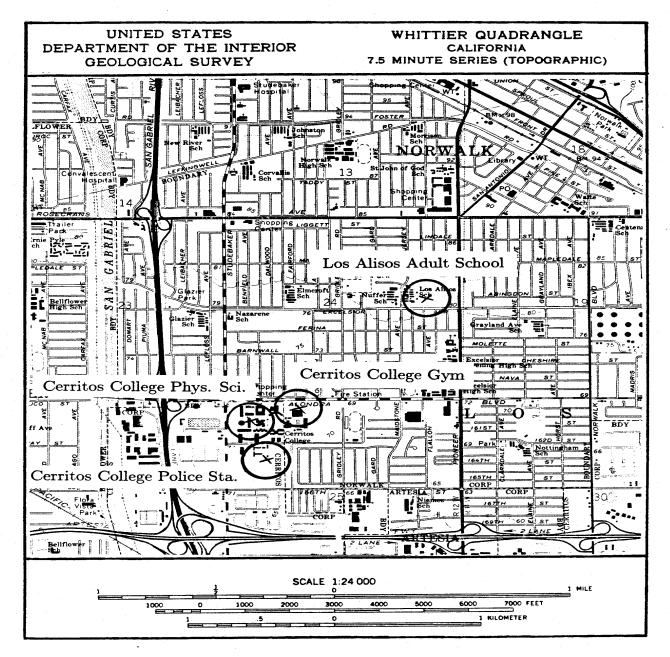


Figure A-1. Site location map for the borehole at Cerritos College Gymnasium.

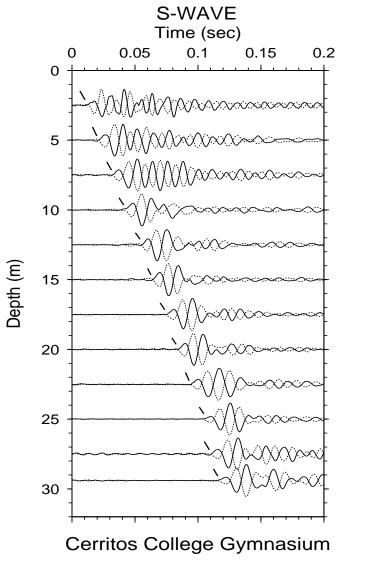
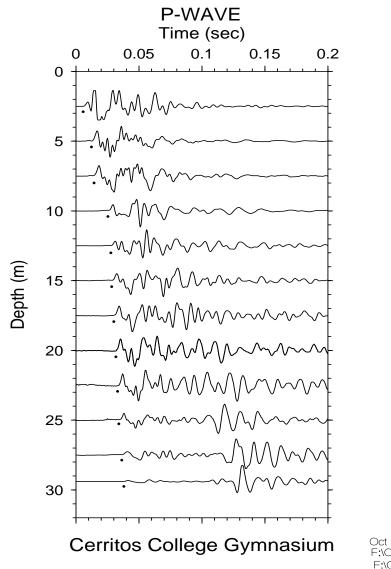



Figure A-2. Horizontal component record section (from impacts in opposite directions) superimposed for identification of S-wave onset. Approximate S-wave time picks are indicated by the hatch marks.

Oct 23, 2001 F:\CGM\CGMPWAVE.DT F:\CGM\CGMPWAVE.GRA

Figure A-3. Vertical component record section. Approximate P-wave arrivals are indicated by the dots.

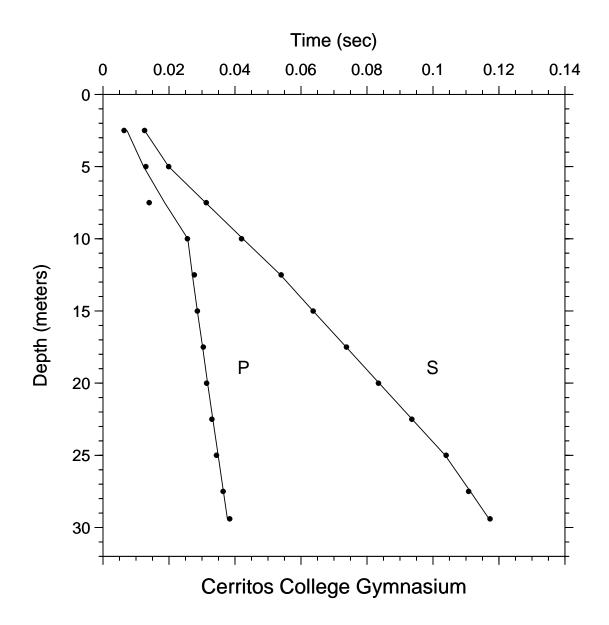
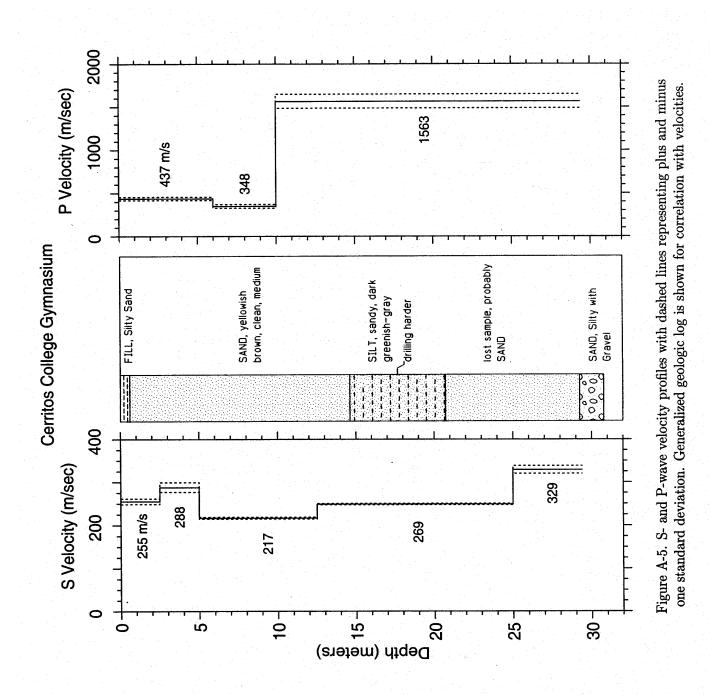



Figure A-4. Time-depth graph of P-wave and S-wave picks. Line segments are straightline interpolations of model predictions at the observation depths. The times for zero depth, not shown, are given by hoffset divided by the velocity in the uppermost layer (see accompanying tables of velocities for specific values).

ABLE A-1. S-wave arrival times and velocity summaries.

			vu(ft/s)	858	981	718	822	1109									10	10	4,	I			_				S											
			_	817	908	704	811	1050								source	to versions along a clent neth! You the evvice!	co receiver, around a state pacify. For one arrival	CLIERS USEU LU CLE 2-WAVE MOURT, CLE CLIERS ALE CLE 2011-11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	ITOM DRMME	grees.	model	average velocity from the surface to each depth,		o the		time), in secs				second	limits)	second				cond .	cond
			~	837	943	711	816	1079								nds (from	-hi Por		t, une un	optained	oy 180 de	from the	face to e	t(s)	alized t			eters		er second	cers per	velocity	cers per	eet		second	et per se	et per se
			thk(ft)	8.2	8.2	24.6	41.0	14.4								in secor	lont not	ned purers		LINCES .	ection]	computed	the suri	d(m)/tvr	ion nor	best pic	 fitted travel 	er in me	meters	leters p(y in met	ion of '	y in met	er in fé	feet	eet per	y in fe	Y IN IE
			dtb(ft)	8.2	16.4	41.0	82.0	96.5						rs		val time	olong o	the C-we	olic from	CKS ITOB	un dir	el time o	ity from	vg_vel =	rd deviat	ation of	(observed - 1	om of lay	layer in	ayer in 1	f velocit	explanat	f velocit	om of lay	layer in	ayer in 1	f velocit	I Velocit
	296		(ຮ/ຫ)ກທ	262	299	219	250	338						depth in meters	depth in feet	observed arrival time in seconds (from source		statet, staad in	in and a set	age or pr	blows differing in direction by 180 degrees.	vertical travel time computed from the model	age veloc	computed as avg_vel = d(m)/tvrt(s)	sigma, standard deviation normalized to the	standard deviation of best picks	residual (obs	depth to bottom of layer in meters	thickness of layer in meters	velocity of layer in meters per second	lower limit of velocity in meters per second	see text for explanation of velocity	= upper limit of velocity in meters per second	depth to bottom of layer in feet	thickness of layer in feet	velocity of layer in feet per second	lower limit of velocity in feet per second	upper limit of velocity in feet per second
	Hole_Code:		_	249	277	215	247	320					ion:	= dept	= depth	= obser	4	4 0 4 4 4 4 4 4		avers		= verti		combr	= sigma			= dept	= thick	= veloc	= lower	(see	= upper	= depth	= thick	н	II	
			_	255	288	217	249	329					Explanation:	d (m)	d(ft)	tsl(s)	-					tvrt (s)	vavg(m/s)=		sig		rsdl(sec)=	dtb(m)	thk (m)	v(m/s)	vl(m/s)		vu (m/s)	dtb(ft)	thk (ft)	v(ft/s)	vl(ft/s)	wu(it/s)
	-118.0	ۍ ۱	thk (m)	2.5	2.5	7.5	12.5	4.4																														
	33.88663 -118.09329	nlayers	dtb(m)	2.5	5.0	12.5	25.0	29.4																														
	rdinates: MS.TT		sig rsdl(sec)	0.0000	0.0000	0.0002	-0.0004	0.0002	0.0000	0.0001	-0.0002	-0.0001	0.0003	-0.0005	0.0003																							
	CONCO		sig	Ч	Ч	Ч	Ч	Ч	Ч	Ч	Ч	Ч	ч	Ч	Ч																							
	College Gymnasium: S Coordinates: travel-time file: F:\CGM\CGMS.TT		vavg(m/s)	255	270	250	241	236	238	239	240	241	242	248	252																							
	lege Gym el-time			0.0098	0.0185	0.0300	0.0415	0.0530	0.0631	0.0731	0.0832	0.0932	0.1032	0.1108	0.1166																							
	- P			0.0126	0.0199	0.0313	0.0420	0.0540	0.0637	0.0738	0.0835	0.0936	0.1040	0.1108	0.1173																							
1	1: Cerrit = 2.00		d(ft)	8.2	16.4	24.6	32.8	41.0	49.2	57.4	65.6	73.8	82.0	90.2	96.5																							
	Location: Cerritos hoffset = 2.00		d (m)	2.5	5.0	7.5	10.0	12.5	15.0	17.5	20.0	22.5	25.0	27.5	29.4																							

TABLE A-2. P-wave arrival times and velocity summaries.

33.88663 -118.09329 Hole_Code: 296 nlayers = 3	<pre>dtb(m) thk(m) V(m/s) vl(m/s) vl(m/s) vu(hr/s) vu(hr/s) vu(hr/s) 6.0 6.0 437 418 456 19.7 19.7 1432 1372 1497 10.0 4.0 348 328 371 32.8 13.1 1142 1075 1129 29.4 19.4 1563 1486 1648 96.5 63.6 5128 4877 5407 Raplamation: d(m) = depth in meters d(ft) = depth in meters d(ft) = depth in meters d(ft) = depth in meters f(ft) = depth in meters d(ft) = depth in meters d(ft) = depth in meters f(ft) = depth in meters d(ft) = depth in meters f(ft) = f(ft) f(ft) = f(ftom hammer hous differing in direction by 180 depres. turt(s) = vertical travel time computed from hammer hous differing in direction by 180 depres. turt(s) = vertical travel time computed from the model travel deviation of hest picks f(m/s) = tinnit of velocity fin meters f(h(m) = depth to bottom of layer in meters f(h(m) = depth to bottom of layer in meters f(h(m)) = depth to bottom of layer in meters f(h(ft)) = depth to bottom of layer in meters f(h(ft)) = depth to bottom of layer in feet f(h(ft)) = lower limit of velocity in meters per second f(h(ft)) = upper limit of velocity in feet per second f(h(ft)) = upper limit of velocity in feet per second f(h(ft)) = upper limit of velocity in feet per second f(h(ft)) = upper limit of velocity in feet per second f(h(ft)) = upper limit of velocity in feet per second f(h(ft)) = upper limit of velocity in feet per second f(h(ft)) = upper limit of velocity in feet per second f(h(ft)) = upper limit of velocity in feet per s</pre>
Location: Cerritos College Gymnasium: P Coordinates: hoffset = 2.00 travel-time file: F:\CGMP.TT	d(m) d(ft) ts1(s) tvrt(s) vavg(m/s) sig rsd1(sec) 2.5 8.2 0.0064 0.057 437 1 -0.0007 7.5 16.4 0.114 437 1 -0.0007 7.5 24.6 0.0140 0.1180 416 5 -0.0011 10.0 32.8 0.0256 0.0256 0.0256 1 -0.0001 11.0 32.8 0.0256 0.0256 0.0256 1 -0.0001 12.5 41.0 0.0256 0.0256 0.0268 466 1 -0.0001 17.5 57.4 0.0304 0.0304 532 1 -0.0003 22.5 73.8 0.0334 0.0344 755 1 -0.0003 22.5.0 82.0 0.0344 0.0344 755 1 -0.0003 22.5 96.5 0.0384 0.0364 7318 1 -0.0001 22.5 90.2 0.0384 0.0376 731 1 -0.0001 22.5 90.2 0.0384

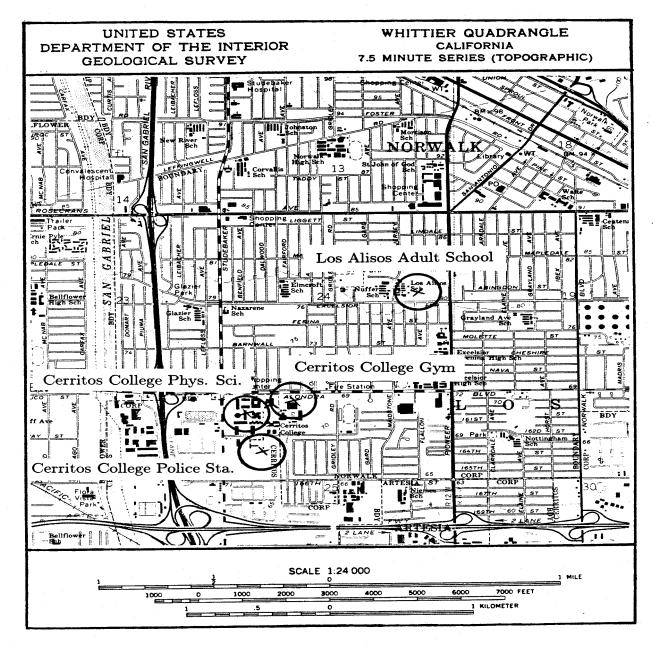


Figure A-6. Site location map for the borehole at Cerritos College Physical Science Building.

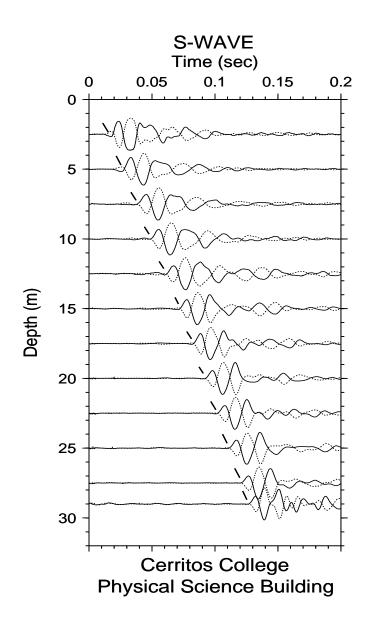


Figure A-7. Horizontal component record section (from impacts in opposite directions) superimposed for identification of S-wave onset. Approximate S-wave time picks are indicated by the hatch marks.

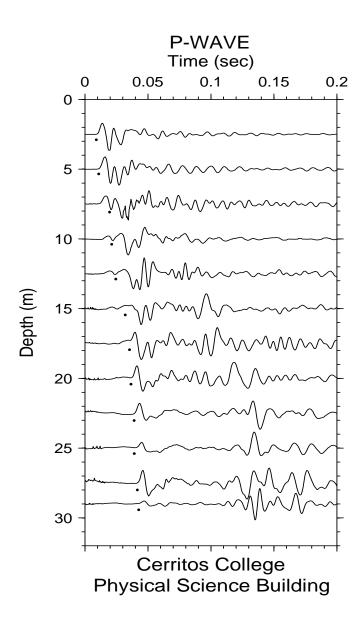


Figure A-8. Vertical component record section. Approximate P-wave arrivals are indicated by the dots.

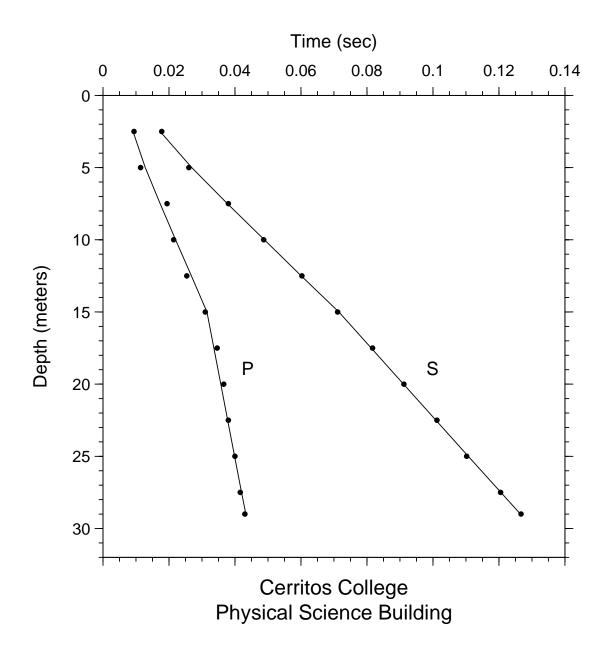
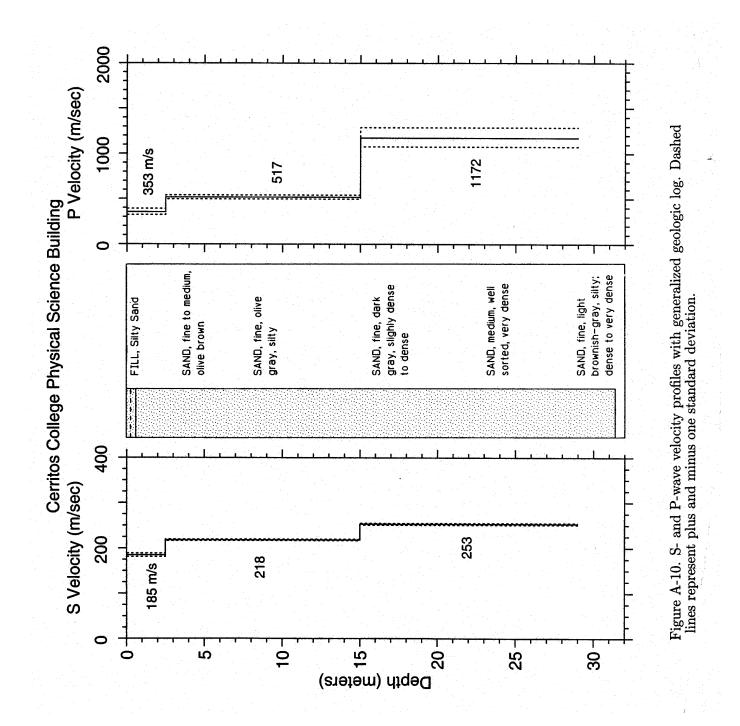



Figure A-9. Time-depth graph of P-wave and S-wave picks. Line segments are straightline interpolations of model predictions at the observation depths. The times for zero depth, not shown, are given by hoffset divided by the velocity in the uppermost layer (see accompanying tables of velocities for specific values).

ABLE A-3. S-wave arrival times and velocity summaries.

Location: Physical Sciences Building: S Coordinates: 33.88589 -118.09700 Hole_Code: hoffset = 2.00 travel-time file: F:\CPSS\CPSS.TT

r nlayers = 3

297

	t/s)	620	721	836																													
	vu(f												ival	the	ûer			à				sca											
	dtb(ft) thk(ft) v(ft/s) vl(ft/s) vu(ft/s)	594	710	823								1 source	r the arri	imes are 1	from ham	egrees.	e model	each depth		co the		le), in s(second	limits)	second				econd	econd
	v(ft/s)	607	715	830								nds (from	th). Foi	l, the t:	obtained	by 180 de	from the	face to (ct (s)	malized t	cks	ravel tin	eters		er second	ters per	velocity	ters per	eet		second	et per s	et per s
	thk(ft)	8.2	41.0	45.9								in seco	slant pa	ave mode.	traces	rection	computed	the sur	d(m)/tv1	tion nor	best pi	fitted t	yer in m	meters	meters p	ty in met	cion of	ty in me	yer in f	feet	feet per	ty in fe	cy in ie
	dtb(ft)	8.2	49.2	95.1						cers	et	= observed arrival time in seconds (from source	to receiver, along a slant path). For the arrival	times used in the S-wave model, the times are the	average of picks from traces obtained from hammer	blows differing in direction by 180 degrees	= vertical travel time computed from the model	vavg(m/s) = average velocity from the surface to each depth,	computed as avg_vel = d(m)/tvrt(s)	lard devia	standard deviation of best picks	rsdl(sec)= residual (observed - fitted travel time), in secs	depth to bottom of layer in meters	= thickness of layer in meters	velocity of layer in meters per second	= lower limit of velocity in meters per second	(see text for explanation of velocity limits)	= upper limit of velocity in meters per second	depth to bottom of layer in feet	thickness of layer in feet	velocity of layer in feet per second	= lower limit of velocity in feet per second	= upper limit of velocity in feet per second
	vu (m/s)	189	220	255						= depth in meters	= depth in feet	erved ar	receiver,	es used	cage of ;	rs differ	cical tr	cage vel	outed as	ia, stano	ndard der	idual (o)	to bol	ckness o	city of	er limit	e text f	er limit	to bot	ckness o	city of	er limit	Er LIMIT
	v(m/s) vl(m/s) vu(m/s)	181	216	251					ion:	= dept	= dept	= obs	t t	time	avei	blo		s)= avei	1 m o D	= sig	star	c)= resi	= dept	= thic	= velc	= lowe	(see	eddn =	= dept	н			
	(s/m)∧	185	218	253					Explanation:	d(m)	d(ft)	tsl(s)					tvrt (s)	vavg(m/		sig		rsdl(se	dtb(m)	thk (m)	v(m/s)	vl(m/s)		vu(m/s)	dtb(ft)	thk (ft)	v(ft/s)	vl(ft/s)	vu(It/s)
יי וו וו	÷	2.5	12.5	14.0																													
nlayers =	dtb (m)	2.5	15.0	29.0																													
	sig rsdl(sec)	0.0005	-0.0009	0.0003	-0.0002	0.0002	-0.0004	0.0004	0.0001	0.0003	-0.0005	-0.0001	0.0002																				
	sig 1	ч	-	ч	Ч	ч	ч	ч	ч	ч	ч	ч	ч																				
	tvrt(s) vavg(m/s)	185	200	206	209	210	212	217	221	224	226	229	230																				
	tvrt (s)	0.0135	0.0250	0.0364	0.0479	0.0594	0.0709	0.0807	0.0906	0.1005	0.1104	0.1203	0.1262																				
		0.0178	0.0260	0.0380	0.0487	0.0603	0.0711	0.0817	0.0912	0.1012	0.1102	0.1205	0.1267																				

summaries.
velocity
and
times
arrival
P-wave
Å-4.
ABLE

Location: Physical Sciences Building: P Coordinates: 33.88589 -118.09700 Hole_Code: hoffset = 2.00 travel-time file: F:\CPS\CPSP.TT

d(ft)	tsl(s)	tvrt (s)	vavg(m/s)	sig	ñ	nlayers dtb(m) t	5 = 3 thk(m)	v(m/s)	vl(m/s)	/m) nu	(s
8.2	0.0094	0.0071	353	Ч	0.0003	2.5	2.5	353	322	ĕ	ĕ
16.4	0.0114	0.0119	420	Ч	-0.0014	15.0	12.5	517	495	540	g,
24.6	0.0194	0.0168	448	Ч	0.0021	29.0	14.0	1172	1076	128	5
32.8	0.0214	0.0216	463	Ч	-0.0006						
41.0	0.0254	0.0264	473	Ч	-0.0014						
49.2	0.0310	0.0313	480	Ч	-0.0005						
57.4	0.0346	0.0334	524	Ч	0.0010						
65.6	0.0366	0.0355	563	Ч	0.0009		-	Explanat	ion:		
73.8	0.0380	0.0377	597	Ч	0.0002			d (m)	= depth	h in	met
82.0	0.0400	0.0398	628	Ч	0.0001			d(ft) =	= depth i	h in	feet
90.2	0.0416	0.0419	656	Ч	-0.0004			tsl(s)		observed	arr:
95.1	0.0430	0.0432	671	Ч	-0.0003				ç	to receiver,	er,

п	
ers	

vu(ft/s) 1280 1771 4223	the the mmer the secs
vl(ft/s) 1057 1626 3530	from source fror the arrival r times are the ed from hammer d degrees. the model the model to each depth, d to the to the time), in secs time), in secs trime), in secs trimes) er second d r second d r second
v(ft/s) 1158 1695 3845	n meters i feet a return a return a return ver, along a slant path). For the s ver, along a slant path). For the s red in the S-vave model, the times and of picks from traces obtained from h travel time computed from the model velocity from the surface to each de a sugvel = d(m/turt(s) velocity from the surface to each de a sugvel = d(m/turt(s) trandard deviation normalized to the deviation of hest picks (observed - fitted travel time), in b bottom of layer in meters of layer in meters per second the of velocity in meters per second init of velocity in meters per second init of velocity in meters per second init of velocity in feet of layer in feet of layer in feet of layer in feet of layer in feet per second init of velocity in feet per second
thk(ft) 8.2 41.0 45.9	n meters n feet l arrival time in seconds (l arrival time in seconds (ver., along a slant path). sed in the S-wave model, th of picks from traces obtain iffering in direction by 18 received time computed from velocity from the surface a avg_vel = d(m)/vrrv[4) avgoring time travel d deviation of best picks (observed - fitted travel standard deviation normalize i d deviation of layer in meters to f layer in meters to f layer in meters o bottom of layer in meters init of velocity in meters init of velocity in meters init of velocity in feet per second init of velocity in feet per init of velocity in feet per init of velocity in feet per init of velocity in feet per second layer in feet per init of velocity in feet per init of velocity in feet per init of velocity in feet per second init of velocity in feet per init of velocity in feet per second in the per second init of velocity in feet per second in the per per init of velocity in feet per second in the per per per of per
dtb(ft) 8.2 49.2 95.1	in meters in feet ad arrival time in aiver, along a sig used in the S-wave used in the S-wave used in the S-wave used in the S-wave al travel time con al travel time con al travel time co al travel time to al toker of by al (observed - fit deviation of by al (observed - fit deviation of by al (observed - fit observed - fit set for explanation to bottom of layer limit of velocity uses of layer in fee limit of velocity in of velocity in of velocity in of velocity in of velocity in of velocity in to velocity in of velocity limit of velocity limit of velocity
vl(m/s) vu(m/s) 322 390 495 540 1076 1287	depth in meters depth in feters depth in feter to receiver, along a slant path). For the arriva to receiver, along a slant path). For the arriva times used in the S-uave model, the times are the average of picks from traces obtained from hammer blows differing in direction by 180 degrees. vertical travel time computed from the model average velocity from the surface to each depth, computed as avg vel = d(m)/vurt(s) average velocity from normalized to the standard deviation normalized to the standard deviation of hest picks residual (observed - fitted travel time), in secs depth to bottom of layer in meters velocity of layer in meters per second lover limit of velocity in meters per second depth to bottom of layer in feet velocity of layer in feet uper limit of velocity in feet velocity of layer in feet velocity in feet per second lover limit of velocity in feet per second lover limit of velocity in feet per second lover limit of velocity in feet per second
vl (m/s) 322 495 1076	
v(m/s) 353 517 1172	<pre>Explanation: d(ft) = d(ft) = tsl(s) = tvrt(s) = vavg(m/s) = rsdl(sec) = dtb(m) = thk(m) = thk(ft) = thk(ft) = thk(ft) = thk(ft) = thk(ft) = thk(ft) = t</pre>
<u>a</u>	

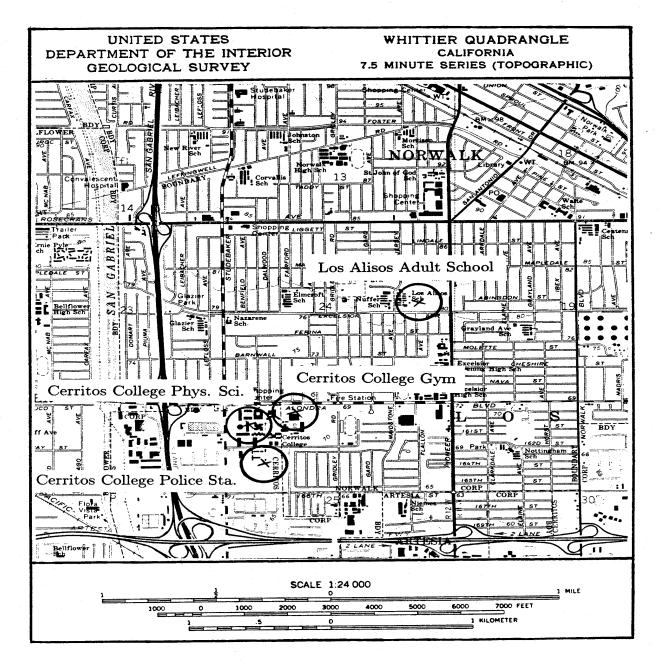
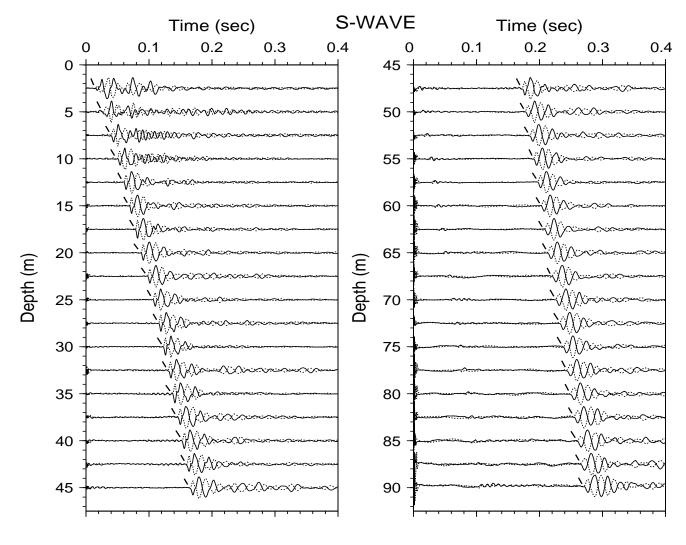
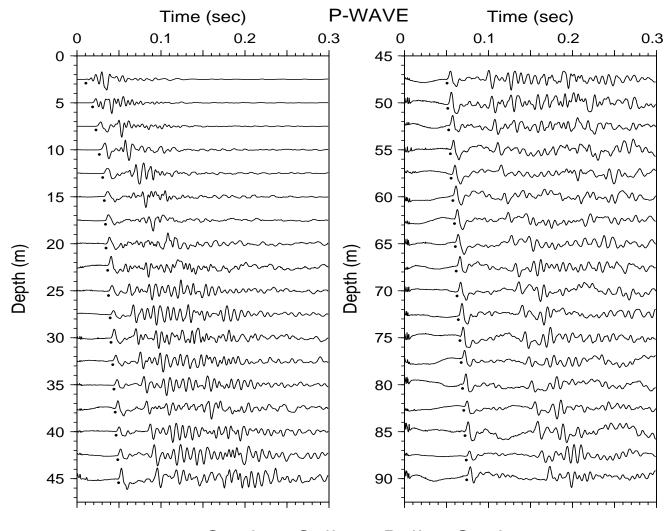




Figure A-11. Site location map for the borehole at Cerritos College Police Building.

Cerritos College Police Station

Figure A-12. Horizontal component record section (from impacts in opposite directions) superimposed for identification of S-wave onset. Approximate S-wave time picks are indicated by the hatch marks.

Cerritos College Police Station

Figure A-13. Vertical component record section. Approximate P-wave arrivals are indicated by the dots.

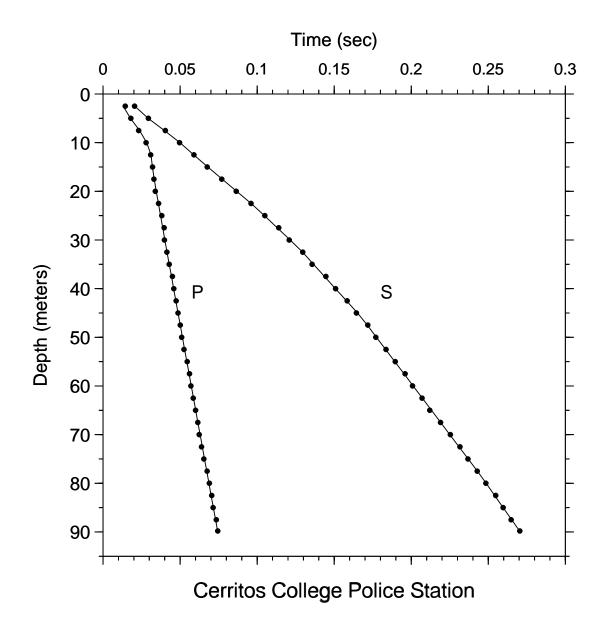
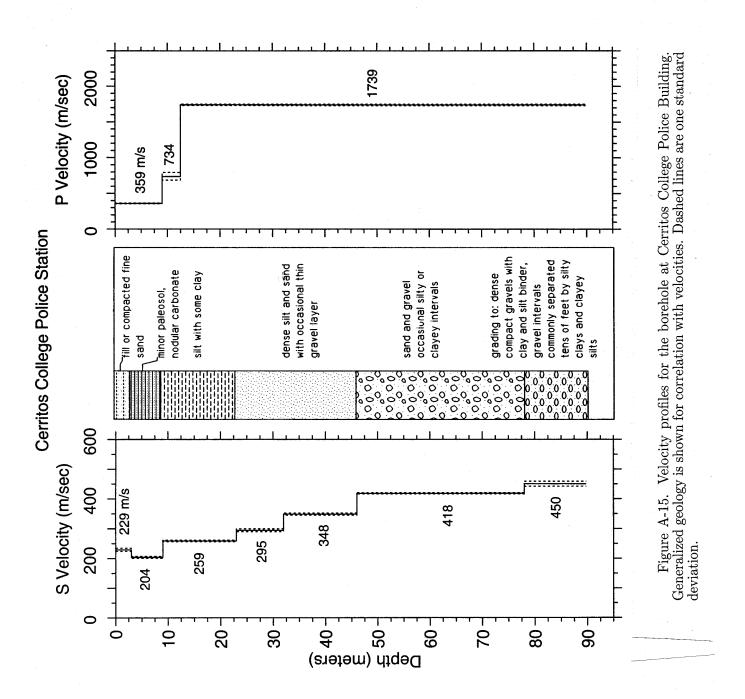



Figure A-14. Time-depth graph of P-wave and S-wave picks. Line segments are straightline interpolations of model predictions at the observation depths. The times for zero depth, not shown, are given by hoffset divided by the velocity in the uppermost layer (see accompanying tables of velocities for specific values).

ABLE A-5. S-wave arrival times and velocity summaries.

-118.09680 Hole_Code: 283 = 7	<pre>Chk(m) v(m/s) v1(m/s) vu(m/s) dch(ft) thk(ft) v(ft/s) v1(ft/s) vu(ft/s) 3.0 229 224 235 9.8 9.8 752 735 770 6.0 204 201 207 29.5 19.7 669 668 660 14.0 259 236 262 150.9 45.9 1143 1136 14.0 348 345 352 150.9 45.9 1143 1131 1156 32.0 442 442 459 294.6 38.7 1477 1450 1505 32.0 418 416 420 255.9 105.0 1372 1365 1380 11.8 450 442 459 294.6 38.7 1477 1450 1505 32.0 418 416 420 254.6 38.7 1477 1450 1505 32.0 418 416 420 254.6 38.7 1477 1450 1505 32.0 418 416 420 254.6 38.7 1477 1450 1505 32.0 418 416 420 254.6 38.7 1477 1450 1505 32.0 418 416 420 2004.6 38.7 1477 1450 1505 32.0 418 416 420 254.6 38.7 1477 1450 1505 32.0 418 416 420 254.6 38.7 1477 1450 1505 32.0 418 416 420 254.6 38.7 1477 1450 1505 32.0 418 416 420 254.6 38.7 1477 1450 1505 32.0 418 416 420 254.6 38.7 1477 1450 1505 32.0 418 416 420 255.9 105.0 1372 1365 32.0 418 11 etcl 4(m) = depth in meters 4(m) = depth in feet 5(1) = depth in feet 5(1) = depth in feet 5(1) = 0.05erved arrival time in seconds (from source 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,</pre>
33.88212 -118.09680 nlayers = 7	dtb 3.0 th 3.2.0 1 3.2.0 1 3.2.0 1 3.2.0 1 8.9.8 0 8.9.8 1 8.9.8 1 1 8.9.8 1 1 8.9.8 1 1 8.9.8 1 1 8.9.8 1 1 8.9.8 1 1 8.9.8 1 1 8.9.8 1 1 8.9.8 1 1 8.9 1 1 8.9 1 8.9 1 1 8.9 1 8.9 1 1 8.9 1 8.9 1 8
olice Building: S Coordinates: avel-time file: F:\CPB\CPBS.TT	vavg(m/s) sig rsdl(sec) 213 1 -0.0002 214 1 -0.0003 215 1 -0.0003 215 1 -0.0003 215 1 -0.0003 215 1 -0.0003 216 1 -0.0003 218 1 -0.0003 219 1 -0.0003 214 1 -0.0003 218 1 -0.0003 219 1 -0.0003 210 1 -0.0003 211 1 -0.0001 212 1 -0.0003 213 1 -0.0001 214 1 -0.0001 215 1 -0.0001 216 1 -0.0001 217 1 -0.0001 218 1 -0.0001 219 1 -0.0001 229 1 -0.0001 <
olice Building: avel-time file:	tvrt tvrt 0.01(\$) 0.0259 0.0352 0.0356 0.0464 0.0356 0.0356 0.0464 0.0557 0.0753 0.0253 0.02555 0.02555 0.02555 0.02555 0.02555 0.02555 0.02555 0.02555 0.02555 0.02555 0.02555 0.025555 0.025555 0.025555 0.025555 0.0255555 0.0255555 0.025555555 0.0255555555555555555555555555555555555
tr tr	<pre>tsl (≤) tsl (≤)</pre>
;; "	$ \begin{array}{c} A \\ A \\ B \\ C \\ A \\ A \\ B \\ C \\ A \\ A \\ B \\ C \\ C \\ A \\ A \\ B \\ C \\ C \\ A \\ A \\ B \\ C \\ C \\ A \\ A \\ B \\ C \\ C \\ C \\ A \\ A \\ C \\ C \\ C \\ A \\ C \\ \mathsf$
Location: hoffset =	A A A A A A A A A A A A A A

summaries.
velocity
and
times
arrival
P-wave
A-6.
ABLE

33.88212 -118.09680 Hole_Code: 283	nlayers = 3	thk(m) v(m/s) vl(m/s) vu(m/s) dtb(ft) thk(ft) v(ft/s) vl(ft/s) vu(9.0 359 355 364 29.5 29.5 1179 1164	12.5 3.5 734 685 792 41.0 11.5 2410 2247 2598 89.8 77.3 1739 1729 1749 294.6 253.6 5705 5671 5738				Zum Lanat ian :	d(m) = depth in meters	-	tsl(s) = observed arrival time in seconds (from source	to receiver, along a slant path). For the arrival	times used in the S-wave model, the times are the	average of picks from traces obtained from hammer	blows differing in direction by 180 degrees.	tvrt(s) = vertical travel time computed from the model	vavg(m/s) = average velocity from the surface to each depth,	computed as avg_vel = d(m)/tvrt(s)	sig = sigma, standard deviation normalized to the	standard deviation	rsdl(sec)= residual (observed - fitted travel time), in secs	п	"		vl(m/s) = lower limit of velocity in meters per second		н	п	thk(ft) = thickness of layer in feet	п	vl(ft/s) = lower limit of velocity in feet per second	vu(ft/s) = upper limit of velocity in feet per second				
P Coordinates: F:\CPB\CPBP.TT		g rsdl(sec) 1 0.0013	1 -0.0005 1 -0.0006	1 -0.0004	1 -0.0002	1 0.0001	7 -0.0005	1 0.0001	1 0.0008	1 0.0009	1 -0.0003	I -0.0001	1 0.0000	1 0.0006	1000.0 1	1 0.0002	1 0.0000	1 0.0000	1 -0.0005	1 -0.0004	1 0.0002	1 0.0003	1 -0.0002	1 -0.0002	T0000.0- I	1 0.0000	1 -0.0006	1 -0.0005	1 -0.0004	1 0.0002	1 0.0003	1 0.0004	1 -0.0002	1 0.0005	I 0.0001
₽ F:\CP		vavg(m/s) sig 359 1	359 359	378	419	480 101	535 100	632	675	715	752	786	818	848	876	903	927	951	973	994	1013	1032	1050	1067	1083	1098	1113	1127	1140	1153	1165	1177	1188	1199	1209
Police Building: travel-time file:			0.0139	0.0264	0.0298	0.0313	0.0347	0.0356	0.0370	0.0385	0.0399	0.0413	0.0428	0.0442	0.0457	0.0471	0.0485	0.0500	0.0514	0.0528	0.0543	0.0557	0.0572	0.0586	0.0600	0.0615	0.0629	0.0643	0.0658	0.0672	0.0687	0.0701	0.0715	0.0730	0.0743
s o			0.0180	0.0279	0.0309	0.0321	0.0330	0.0360	0.0381	0.0396	0.0398	0.0414	0.0429	0.0450	0.0459	0.0474	0.0486	0.0501	0.0510	0.0525	0.0546	0.0561	0.0570	0.0585	0.0600	0.0615	0.0624	0.0639	0.0654	0.0675	0.0690	0.0705	0.0714	0.0735	0.0744
n: Cerrit = 4.00		d(ft) 8.2	16.4 24.6	32.8	41.0	49.2	57.4 65.6	73.8	82.0	90.2	98.4	106.6	114.8	123.0	131.2	139.4	147.6	155.8	164.0	172.2	180.4	188.6	196.9	205.1	Z13.3	221.5	229.7	237.9	246.1	254.3	262.5	270.7	278.9	287.1	294.6
Locatio hoffset		ሰ(m) 2.5	7.5	10.0	12.5	15.0	17.5 20.0	22.5	25.0	27.5	30.0	32.5	35.0	37.5	40.0	42.5	45.0	47.5	50.0	52.5	55.0	57.5	60.0	62.5	65.0	67.5	70.0	72.5	75.0	77.5	80.0	82.5	85.0	87.5	89.8

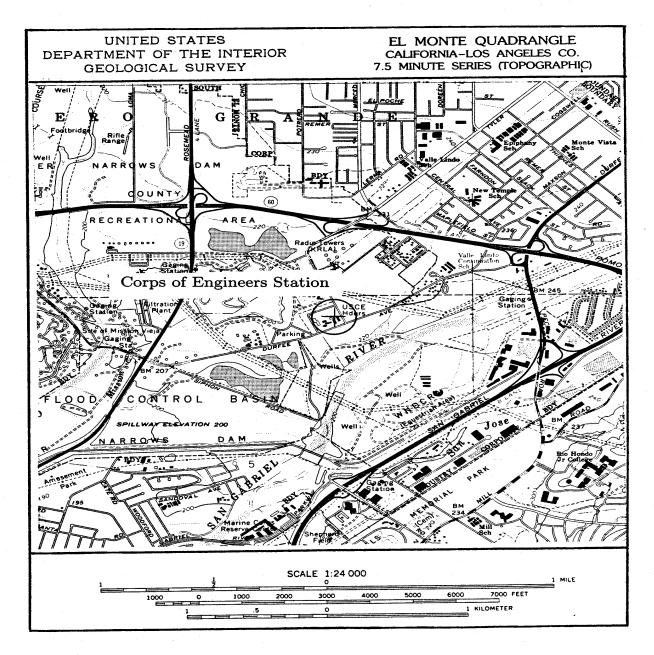


Figure A-16. Site location map for the borehole at Corps of Engineers Station. The accelerograph is located approximately 45 meters from the borehole.

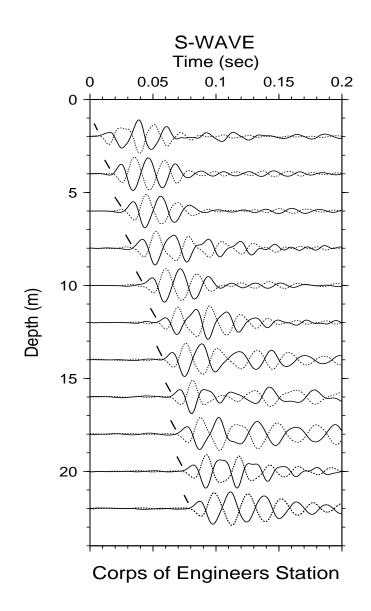


Figure A-17. Horizontal component record section (from impacts in opposite directions) superimposed for identification of S-wave onset. Approximate S-wave time picks are indicated by the hatch marks.

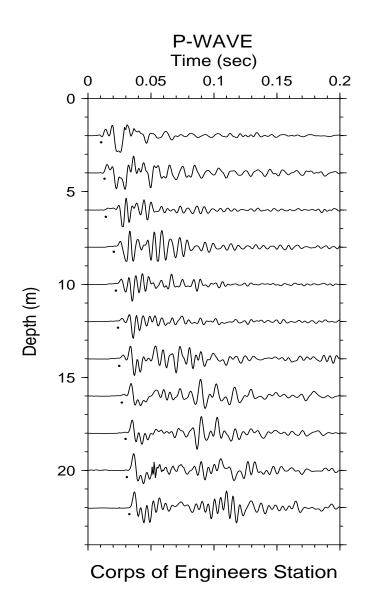


Figure A-18. Vertical component record section. Approximate P-wave arrivals are indicated by the dots.

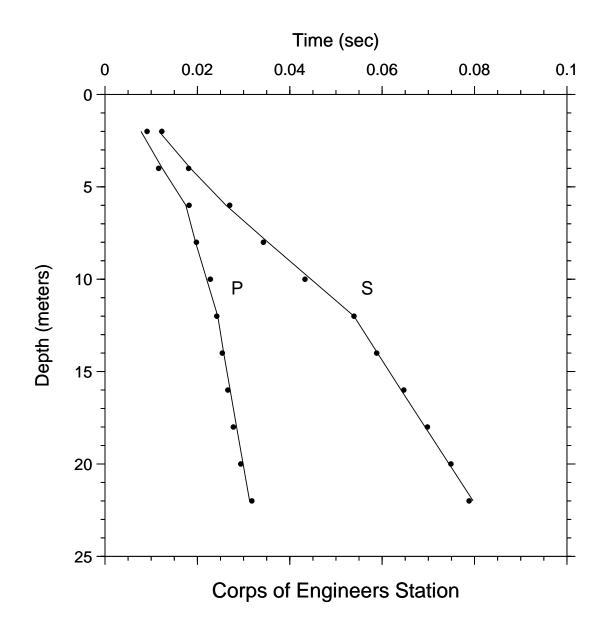
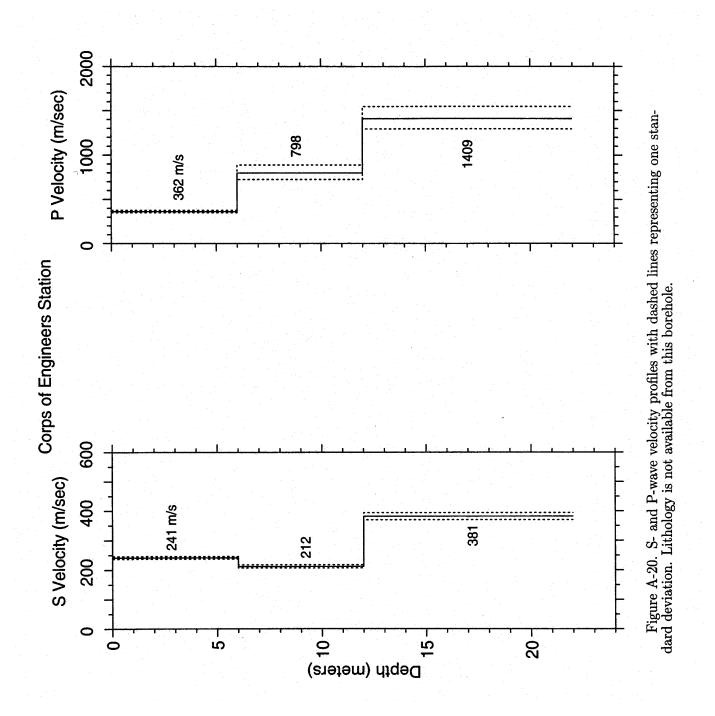



Figure A-19. Time-depth graph of P-wave and S-wave picks. Line segments are straightline interpolations of model predictions at the observation depths. The times for zero depth, not shown, are given by hoffset divided by the velocity in the uppermost layer (see accompanying tables of velocities for specific values).

sumaries.
velocity
and
times
arrival
S-wave
A-7.
ABLE

298	
Hole_Code:	
34.03219 -118.05225	
34.032	
Coordinates:	: \NAR\NARS. TT
02	2
Station:	file: F
Corps of Rngineers	travel-time
0	_
	2.00
Location:	hoffset =

				-		nlayers	с н м				
t. N	(s)	+	vavg(m/s)	sig	rsdl(sec)	dtb(m)	thk (m)	v(m/s)	vl(m/s)	-	m/s)
0	0123		241	Ч	0.0006	6.0	6.0	241	237		246
0	0181		241	Ч	-0.0004	12.0	6.0	212	207		217
ö	0270		241	Ч	0.0008	22.0	10.0	381	370		394
ö	0343		233	Ч	-0.0010						
ö	0433	0.0438	228	~	-0.0012						
ö	0539		226	Ч	0.0000						
ö	0588		240	Ч	-0.0002						
ö	0647		251	Ч	0.0006			Explanat	cion:		
0	0.0698		261	Ч	0.0005			d(m) =	= dej	oth Sth	in meter
0	.0749		270	Ч	0.0004			d(ft)	= de	depth	in feet

1 -0.0009

277

22.0 72.2 0.0788 0.0794

\sim	
п	
10	
ers.	

 dtb(ft)
 thk(ft)
 v(ft/s)
 vu(ft/s)

 19.7
 19.7
 792
 778
 808

 39.4
 19.7
 695
 678
 714

 72.2
 32.8
 1252
 1214
 1292

<pre>Explanation: d(m) = d(ft) = tsl(s) = vavg(m/s) = sig = rsdl(sec) = dtb(m) = vu(m/s) = vu(m/s) = thk(ft) = thk(ft) = vu(ft/s) = vl(ft/s) = vu(ft/s) = vu(ft/s) =</pre>	1: = depth in meters = depth in feet		<pre>= vertical travel time computed from the model = average velocity from the surface to each depth, computed as avg_vel = d(m)/tvrt(s)</pre>	= sigma, standard_deviation normalized to the standard deviation of hest picks		
	kplanation d(m) d(ft)	csl(s)	tvrt (s) vavg (m/s):	sig	÷ ~ ~	

summaries.
velocity
and
times
arrival
P-wave
Å-8.
ABLE

Location: Corps of Engineers Station: P Coordinates: 34.03219 -118.0525 hoffset = 2.00 travel-time file: F:\NAR\WARP.IT

I nlayers = 3

298

Hole_Code:

 $dtb\left(m\right)\ thk\left(m\right)\ v\left(m/s\right)\ vl\left(m/s\right)\ vu\left(m/s\right)$

s) twrt(s) vavg(m/s) sig rsdl(sec) 31 0.0055 362 2 0.0012 16 0.0110 362 1 -0.0007 382 0.0191 419 3 0.0008 38 0.0191 419 3 0.0002 28 0.0241 498 1 -0.0001 54 0.0255 549 1 -0.0001 56 0.0256 594 3 -0.0004 56 0.0258 672 1 -0.0007 38 0.0238 672 1 -0.0004 34 0.0238 672 1 0.0005

tsl(s) 0.0091 0.0116 0.0182 0.0182 0.0284 0.0284 0.0286 0.0266 0.0278 0.0278

A(m) 2.0 2.0 6.0 6.0 11.0 114.0 114.0 116.0 116.0 22.0 22.0

 $dtb(ft) \ thk(ft) \ v(ft/s) \ vl(ft/s) \ vu(ft/s)$

2915 2915 5070	Ĩ	the uer	ć	secs			
1146 2375 4246	1 source	co receiver, along a statur pacht, for oue artiva. times used in the S-wave model, the times are the average of picks from traces obtained from hammer blows differing in direction by 180 degrees.	the model to each depth,	d to the time), in s		second limits) second	
1188 2618 4622	÷	Luy. For 1, the tim obtained f by 180 deg	a .	malized t cks ravel tin	meters : per second	ters per velocity ters per	cond per
19.7 19.7 32.8	in seco	stand pa tave mode. traces rection	computed the sur d(m)/tvy	iation normalize of best picks - fitted travel	layer in meters in meters .n meters per se	ty in me tion of ty in me	yer in f feet feet per ty in fe ty in fe
19.7 39.4 72.2	depth in meters depth in feet observed arrival time in seconds	co receiver, along a stanc paciny. For the times used in the S-wave model, the times a average of picks from traces obtained from blows differing in direction by 180 degrees	vertical travel time computed from the model average velocity from the surface to each de computed as avg_vel = d(m)/tvrt(s)	sigma, standard deviation normalized standard deviation of best picks residual (observed - fitted travel ti	depth to bottom of layer in thickness of layer in meters velocity of layer in meters	lower limit of velocity in meters per (see text for explanation of velocity upper limit of velocity in meters per	depth to bottom of layer in feet thickness of layer in feet velocity of layer in feet per second lower limit of velocity in feet per upper limit of velocity in feet per
376 889 1545	depth in meters depth in feet observed arriva	co receiver, along times used in the average of picks f blows differing in	ical trav age velo uted as	sigma, stands standard dev residual (ob:	depth to bottom of thickness of layer velocity of layer i	r limit text fo r limit	h to bot ¹ kness of city of r limit r limit
349 724 1294		time aver blou			<pre>= dept = thic = velo</pre>		
	tion: = =		" =(S/	= = = ()=			
362 362 1409	<pre>Explanation: d(m) = d(ft) = tsl(s) =</pre>		tvrt(s) = vavg(m/s)=	sig = rsdl(sec)=	dtb(m) thk(m) v(m/s)	vl(m/s) vu(m/s)	dtb(ft) thk(ft) v(ft/s) vl(ft/s) vu(ft/s)
6.0 10.0							
6.0 12.0 22.0							

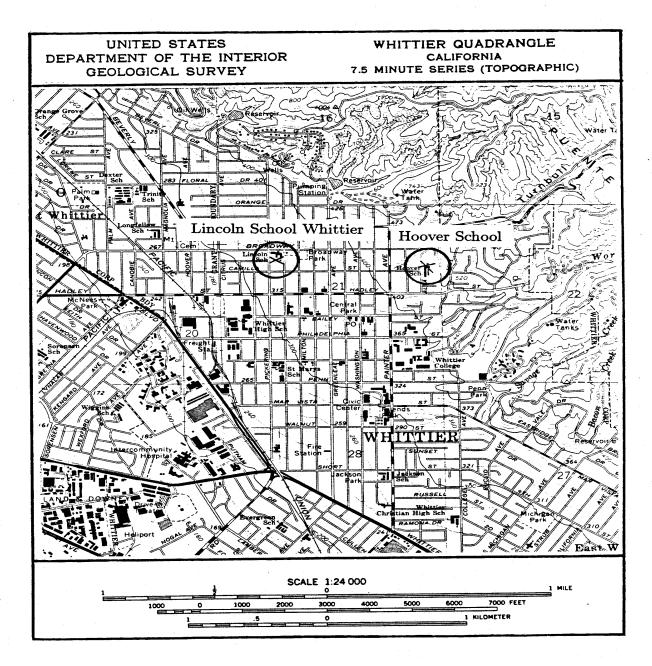


Figure A-21. Site location map for the borehole at Hoover School. The accelerograph is located approximately 30 meters from the borehole.

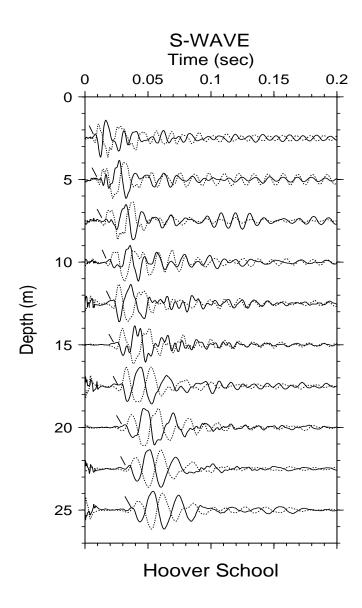


Figure A-22. Horizontal component record section (from impacts in opposite directions) superimposed for identification of S-wave onset. Approximate S-wave time picks are indicated by the hatch marks.

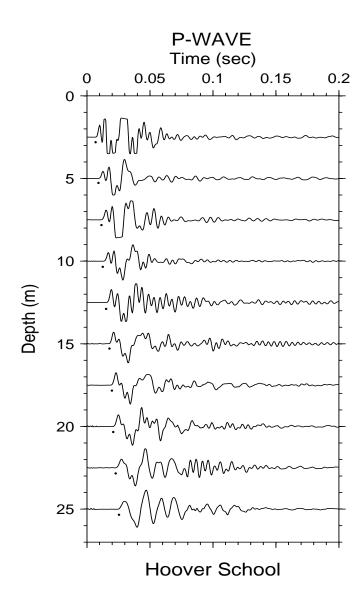


Figure A-23. Vertical component record section. Approximate P-wave arrivals are indicated by the dots.

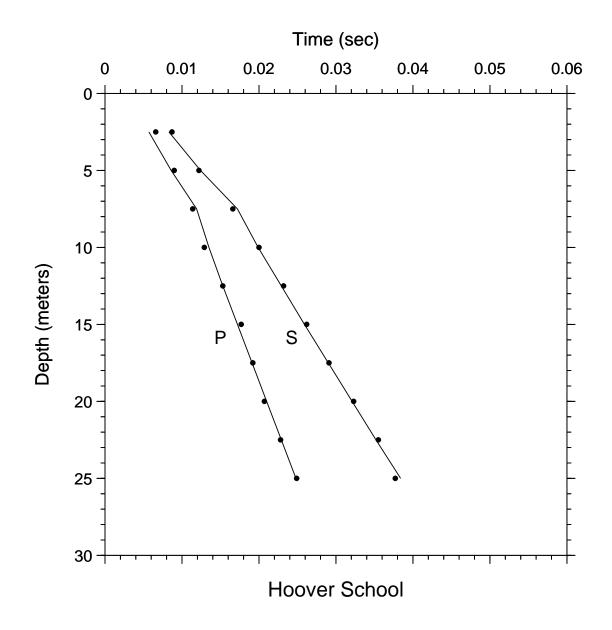
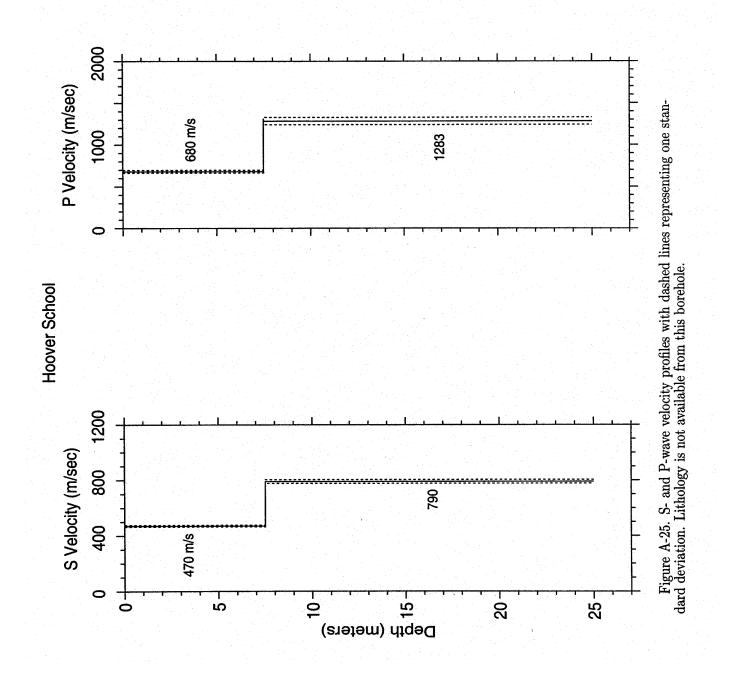



Figure A-24. Time-depth graph of P-wave and S-wave picks. Line segments are straightline interpolations of model predictions at the observation depths. The times for zero depth, not shown, are given by hoffset divided by the velocity in the uppermost layer (see accompanying tables of velocities for specific values).

summaries.
velocity
and
times
arrival
S-wave
A-9.
ABLE

33.98491 -118.02890 Hole_Code: 299 nlæyers = 2	<pre>dtb(m) thk(m) v(m/s) vu(m/s) dtb(ft) thk(ft) v(ft/s) vu(ft/s) 7.5 7.5 470 464 476 24.6 24.6 1542 1551 1563 2.5.0 17.5 790 777 804 82.0 57.4 2593 2549 2659 2.5.0 17.5 790 777 804 82.0 57.4 2593 2549 2659 d(m) = depth in meters d(m) = depth in meters d(ft) = depth in feet to receiver, along a slant path). For the arrival times used in the 8-vave model. the times are the average of picks from traces obtained from haumer times used in the 8-vave model. the times are the vavg(m/s) = average velocity from the model vavg(m/s) = signa, standard deviation by 100 degrees. tvrt(s) = vertical travel time computed from haumer vavg(m/s) = average velocity from the surface to each depth, sig = signa, standard deviation normalized to the standard deviation normalized to the to reclices to explore the surface dtb(m) = dtb(m) (vrrt(s) sig = signa, standard deviation normalized to the trad(sec) = residual (besrved - fitted travel time), in secs dtb(m) = depth to bottom of layer in meters thk(m) = thickness of layer in meters thk(m) = thickness of layer in meters thk(m) = thickness of layer in meters thk(ft) = upper limit of velocity in meters vu(m/s) = velocity of layer in meters thk(ft) = thickness of layer in meters thk(ft) = thickness of layer in meters thk(ft) = thickness of layer in feet thk(ft</pre>
Coordinates: file: F:\H00\H00S2.TT	Vavg(m/s) sig rsdl(sec) 470 1 0.0004 470 1 -0.0005 470 1 -0.0005 561 1 0.0001 562 1 0.0003 612 1 0.0003 612 1 0.0003 656 1 -0.0003 656 1 -0.0007
Location: Hoover School: S hoffset = 3.00 travel-time	d(m) d(ft) tsl(s) tvrt(s) 2.5 8.2 0.0087 0.0053 5.0 16.4 0.0122 0.0106 7.5 24.6 0.0156 0.0191 10.0 32.8 0.0200 0.0191 112.5 41.0 0.0222 17.5 57.4 0.0291 0.0286 20.0 65.6 0.0323 0.0318 22.5 73.8 0.0355 0.0349 22.0 82.0 0.0377 0.0381 25.0 82.0 0.0377 0.0381

summaries.
velocity
and
times
arrival
P-wave
A-10.
ABLE

33.98491 -118.02890 Hole_Code: 299 nlæyers = 2	<pre>dtb(m) thk(m) v(m/s) vu(m/s) ut(m/s) ut(ft/s) vu(ft/s) vu(ft/s) 7.5 7.5 680 664 697 24.6 23.1 2179 2286 25.0 17.5 1283 1241 1328 82.0 57.4 4211 4072 4359 25.0 17.5 1283 1241 1328 82.0 57.4 4211 4072 4359 25.0 17.5 1283 1241 1328 82.0 57.4 4211 4072 4359 25.0 17.5 128 4000 ft in meters a(ft) = depth in feet t(ft) = depth in feet t(ft) = depth in feet to receiver, along a slant path). For the arrival times are the average of picks from traces obtained from hanner blows differing in direction by 180 degrees. tvrt(s) = averical travel time computed from the model varg(m/s) = average velocity from the surface to each depth, computed as avg_vel = d(m)/tvrt(s) sig = sigma, standard deviation normalized to the standard deviation of best picks thk(m) = thickness of layer in meters thk(m) = thickness of layer in meters thk(m) = thickness of layer in meters thk(m) = thickness of layer in meters thk(ft) = two of layer in meters v(ft/s) = vertical in of velocity in meters thk(ft) = thickness of layer in feet thk(ft) = thickness of layer in feet per second v(ft/s) = uver limit of velocity in feet per second v(ft/s) = uver limit of velocity in feet per second v(ft/s) = uver limit of velocity in feet per second v(ft/s) = uver limit of velocity in feet per second v(ft/s) = uver limit of velocity in feet per second v(ft/s) = uvelocity of layer in feet per second v(ft/s) = uver limit of velocity in feet per second v(ft/s) = uver limit of velocity in feet per second v(ft/s) = uver limit of velocity in feet per second v(ft/s) = uver limit of velocity in feet per second v(ft/s) = uver limit of velocity in feet per second v(ft/s) = uver limit of velocity in feet per second v(ft/s) = uver limit of veloc</pre>
Location: Hoover School: P Coordinates: 35 hoffset = 3.00 travel-time file: F:\HOO\HOOP2.TT r	d(m) d(ft) tsl(s) tvrt(s) vavg(m/s) sig rsdl(sec) 2.5 8.2 0.0066 0.0037 680 1 0.0009 5.0 16.4 0.0009 0.0074 680 1 0.0005 7.5 24.6 0.0110 680 1 -0.0006 11.0 0.22 0.0129 0.0130 771 1 -0.0006 11.5 57.4 0.0129 0.0139 839 1 0.0001 15.5 57.4 0.0122 0.0128 930 1 0.0001 17.5 57.4 0.0228 0.0228 930 1 0.0001 220.0 65.6 0.0207 990 1 0.0001 220.0 65.6 0.0228 0.0228 930 1 0.0001 220.0 82.0 0.0249 0.0247 1013 1 0.0001 220.5 73.8 0.0228 0.0247 1013 1 0.0001 220.0 82.0 0.0249 0.0247 1013 1 0.0001 220.0 82.0 0.0249 0.0247 1013 1 0.0001 220.0 82.0 0.0249 0.0247 1013 1 0.0001 220.0 82.0 0.0249 0.0247 1013 1 0.0001 220.0 82.0 0.0249 0.0247 1013 1 0.0001 220.0 82.0 0.0249 0.0247 1013 1 0.0001 220.0 82.0 0.0249 0.0247 1013 1 0.0001 220.0 82.0 0.0249 0.0247 1013 1 0.0001 220.0 82.0 0.0249 0.0247 1013 1 0.0001 220.0 82.0 0.0249 0.0247 1013 1 0.0001 220.0 82.0 0.0249 0.0247 1013 1 0.0001 220.0 82.0 0.0249 0.0247 1013 1 0.0001 220.0 82.0 0.0249 0.0247 1013 1 0.0001 220.0 82.0 0.0249 0.0247 1013 1 0.0001 220.0 82.0 0.0249 0.0247 1013 1 0.0001 220.0 82.0 0.0249 0.0247 1013 1 0.0001 0.0011 220.0 82.0 0.0249 0.0247 1013 1 0.0001 0.0011 220.0 82.0 0.0249 0.0247 1013 1 0.0001 0.0011 220.0 82.0 0.0249 0.0247 1013 1 0.0001 0.0011 220.0 82.0 0.0244 0.0011 220.0 82.0 0.0244 0.0011

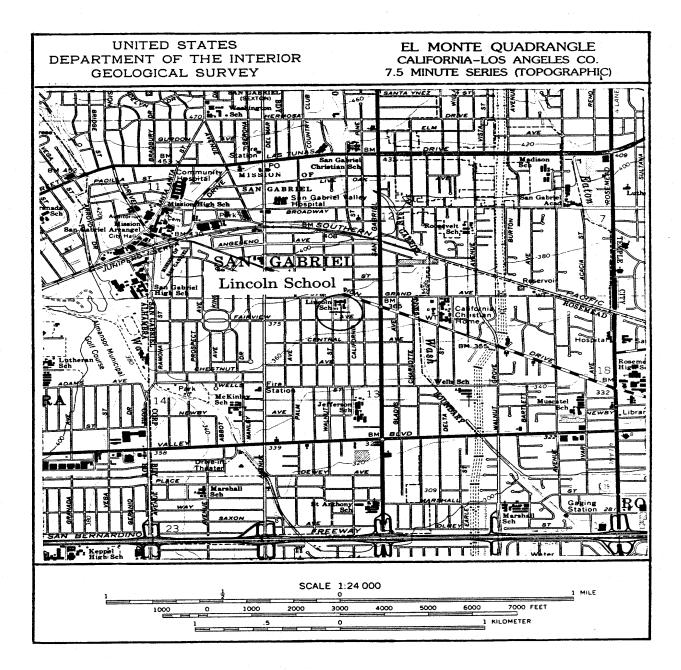


Figure A-26. Site location map for the borehole at Lincoln School. The accelerograph is located approximately 91 meters from the borehole.

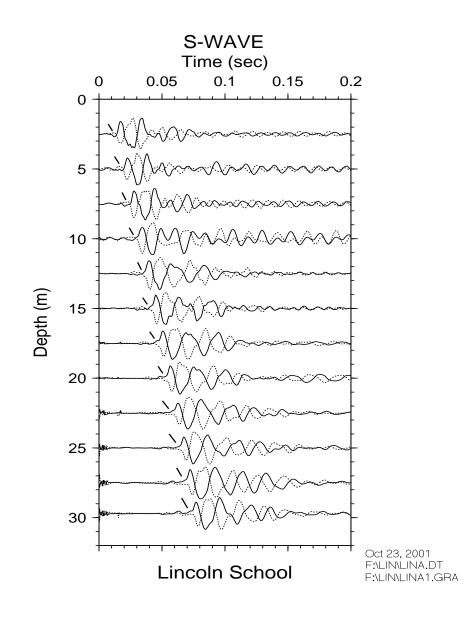


Figure A-27. Horizontal component record section (from impacts in opposite directions) superimposed for identification of S-wave onset. Approximate S-wave time picks are indicated by the hatch marks.

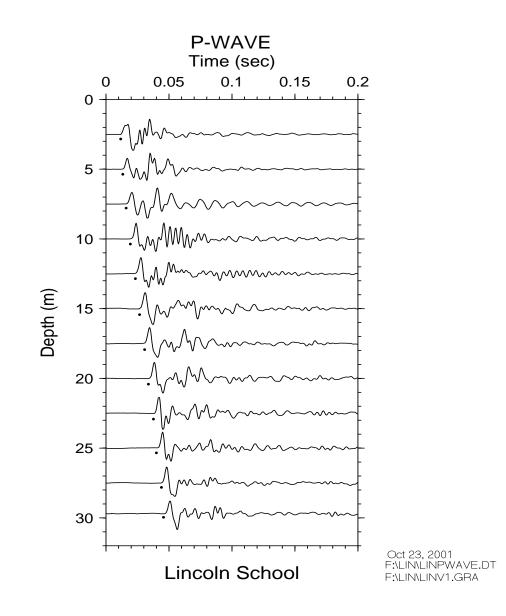


Figure A-28. Vertical component record section. Approximate P-wave arrivals are indicated by the dots.

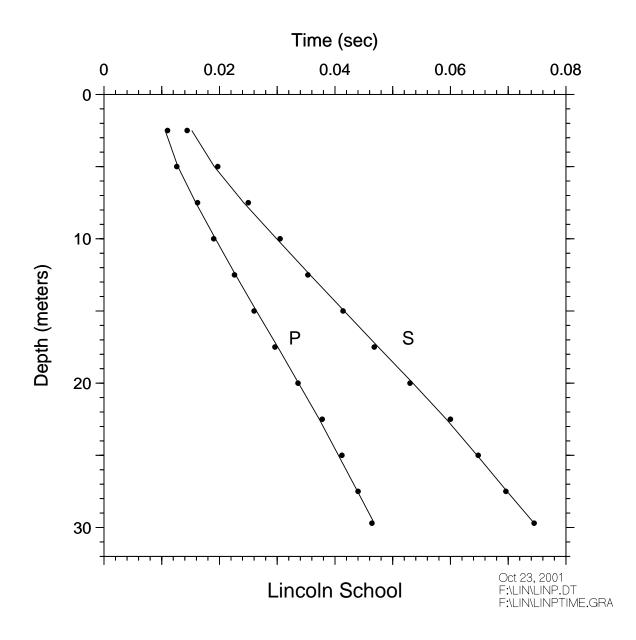
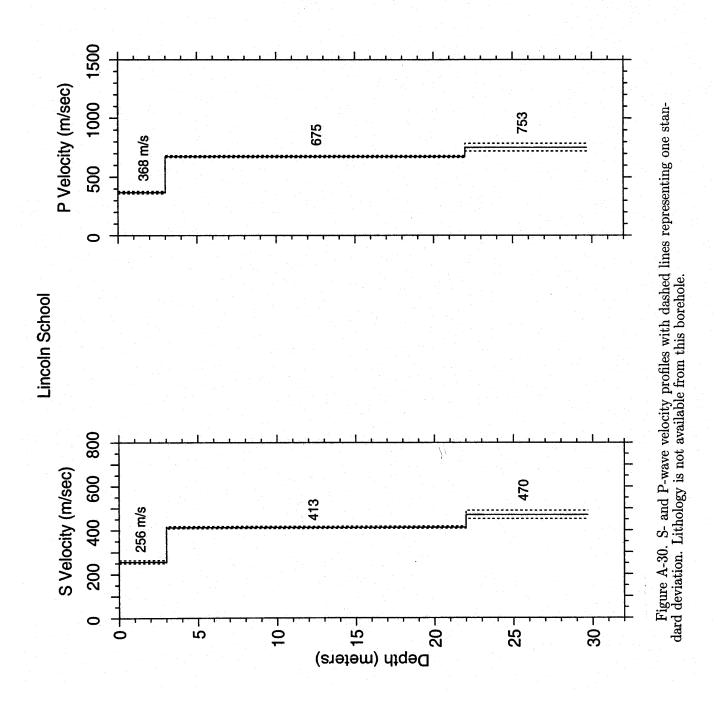
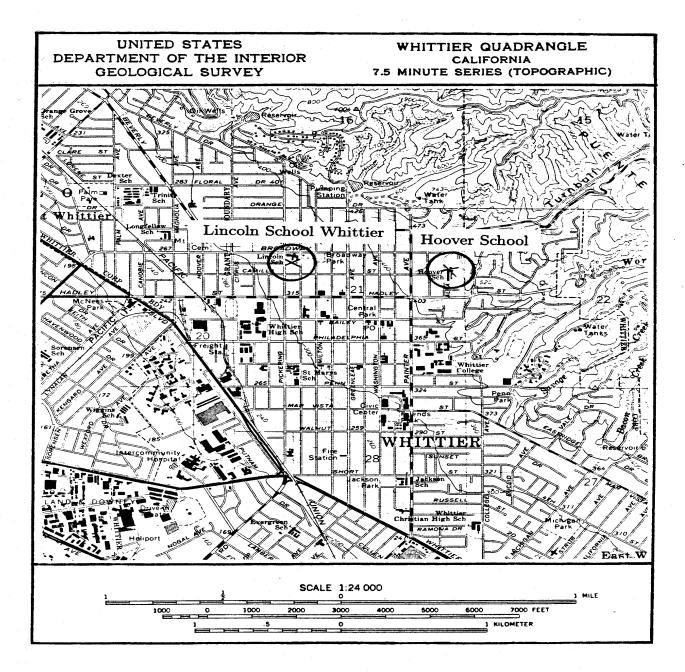
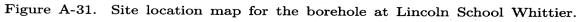



Figure A-29. Time-depth graph of P-wave and S-wave picks. Line segments are straightline interpolations of model predictions at the observation depths. The times for zero depth, not shown, are given by hoffset divided by the velocity in the uppermost layer (see accompanying tables of velocities for specific values).




summaries.
velocity
and
times
arrival
S-wave
Å-11.
ABLE

	<pre>/s) vu(m/s) dtb(ft) thk(ft) v(ft/s) vu(ft/s) vu(ft/s) 264 9.8 9.8 841 818 865 08 418 72.2 62.3 1354 1338 1371 52 490 97.4 25.3 1544 1484 1609 152 490 97.4 25.3 1544 1484 1609 depth in meters depth in feet to receive a long a slant path). For the arrival times used in the S-wave model, the times are the average of picks from traces obtained from hammer blows differing in direction by 180 degrees. vertical travel time computed from hammer blows differing in direction by 180 degrees. vertical travel time travel time), in secs depth to best picks trandard deviation normalized to the standard deviation of hest picks trandard deviation of velocity limits) upper limit of velocity in meters per second depth to bottom of layer in feet depth to bottom of layer in feet velocity of layer in meters per second depth to bottom of layer in feet depth to bottom of layer in feet velocity of layer in feet depth to bottom of layer in feet velocity of layer in feet velocity of layer in feet velocity of layer in feet velocity of layer in feet depth to bottom of layer in feet velocity of layer in feet per second dupter limit of velocity in feet per second lower limit of velocity in feet per second lower limit of velocity in feet per second</pre>
Hole_Code: 300	a 0 4 4
18.09300 Hole 3	v(m/s) 256 413 413 413 413 416 (1m) (1m) tott(s) vavg(m/s) vavg(m/s) vavg(m/s) v1(m/s) v1(ft/s) v1(ft/s) v1(ft/s) v1(ft/s) v1(ft/s) v1(ft/s) v1(ft/s) v1(ft/s) v1(ft/s)
34.09043 -118.09300 niayers = 3	dtb(m) thk(m) 3.0 3.0 22.0 19.0 29.7 7.7 7.7
Coordinates: N\LINS2.TT	sig rsdl(sec) 1 -0.006 1 0.0006 1 -0.0006 1 -0.0007 1 -0.0007 1 -0.0007 1 -0.0007 1 -0.0007 1 -0.0002 1 -0.0002
Coordinate file: F:\LIN\LINS2.TT	∨ауд(m/s) 355 363 349 368 378 378 396 401 395 401
School: S travel-time	Turt(s) 0.0098 0.0226 0.0287 0.0347 0.0468 0.0529 0.0529 0.0529 0.0524 0.0741 0.0741
oln Schu 10 trav	ts1(s) 0.0144 0.01305 0.0305 0.0468 0.0468 0.0696 0.0696 0.0696 0.0745 0.0745
Location: Lincoln hoffset = 3.00	д 42.97.47.47.06.8 47.87.47.17.47.47.47.47.47.47.47.47.47.47.47.47.47
Locatio hoffset	d(m) 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5

summaries.
velocity
and
times
arrival
P-wave
Å-12.
ABLE

34.09044 -118.09306 Hole_Code: 300 nlayers = 3	<pre>dtb(m) thk(m) v(m/s) v1(m/s) vu(m/s) dtb(ft) thk(ft) v(ft/s) v1(ft/s) vu(ft/s) 3.0 3.0 3.68 338 378 9.8 1207 1175 1241 222.0 19.0 675 666 634 72.2 62.3 2213 2184 2243 229.7 7.7 753 722 737 97.4 25.3 2470 2367 2562 d(m) = depth in meters d(ft) = depth in meters d(ft) = depth in faet to receiver, along a slant path). For the arrival times used in the S-wave model, the times are the average of picks from traces obtained from hammer hlows differing in direction by 180 degrees. turt(s) = vertical travel time computed from the model varg(m/s) = sargreel = d(m)/turt(s) igna, standard deviation normalized to the standard deviation of hest picks thk(m) = thickness of layer in meters thk(m) = thickness of layer in feet thk(ft) = used: the fourter of velocity in meters thk(ft) = used: thic to be the strike travel time, vinse(tft/s) = used: the the second u(ft/s) = user limit of velocity in meters per second u(ft/s) = user limit of velocity in feet vecond u(ft/s) = user limit of velocity in feet vecond u(ft/s) = user limit of velocity in feet vecond u(ft/s) = user limit of velocity in feet vecond u(ft/s) = user limit of velocity in feet vecond u(ft/s) = user limit of velocity in feet vecond u(ft/s) = user limit of velocity in feet vecond u(ft/s) = user limit of velocity in feet vecond u(ft/s) = user limit of velocity in feet vecond u(ft/s) = user limit of velocity in feet vecond u(ft/s) = user limit of velocity in feet vecond u(ft/s) = user limit of velocity in feet vecond u(ft/s) = user limit of velocity in feet vecond u(ft/s) = user limit of velocity in feet vecond u(ft/s) = user limit of velocity in feet vecond u(ft/s) = user limit of velocity in feet vecond u(ft/s) = user limit</pre>
location: Lincoln School: P Coordinates: 3 hoffset = 3.00 travel-time file: F:\LIN\LINP.TT	d(m)d(ft)tsl(s)tvrt(s)vavg(m/s)sigrsdl(sec)2.58.20.01100.006836810.00045.016.40.01260.01114501-0.00027.524.60.01260.01485661-0.000310.032.80.01260.012555401-0.000311.532.80.01260.02255521-0.000417.557.40.02660.02255781-0.000417.557.40.02660.02595781-0.000417.557.40.02560.02765011-0.001420.665.60.03360.03336001-0.001421.573.80.03780.03706031-0.001422.573.80.03760.04400.043663110.000527.597.40.04640.04460.04366331-0.000129.797.40.04640.04656331-0.000329.797.40.04656331-0.0003

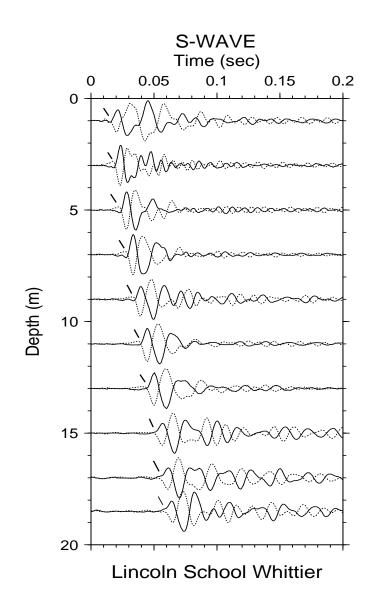


Figure A-32. Horizontal component record section (from impacts in opposite directions) superimposed for identification of S-wave onset. Approximate S-wave time picks are indicated by the hatch marks.

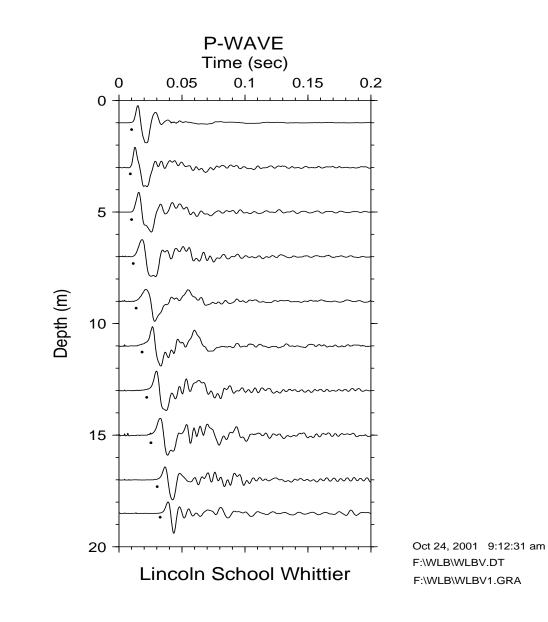


Figure A-33. Vertical component record section. Approximate P-wave arrivals are indicated by the dots.

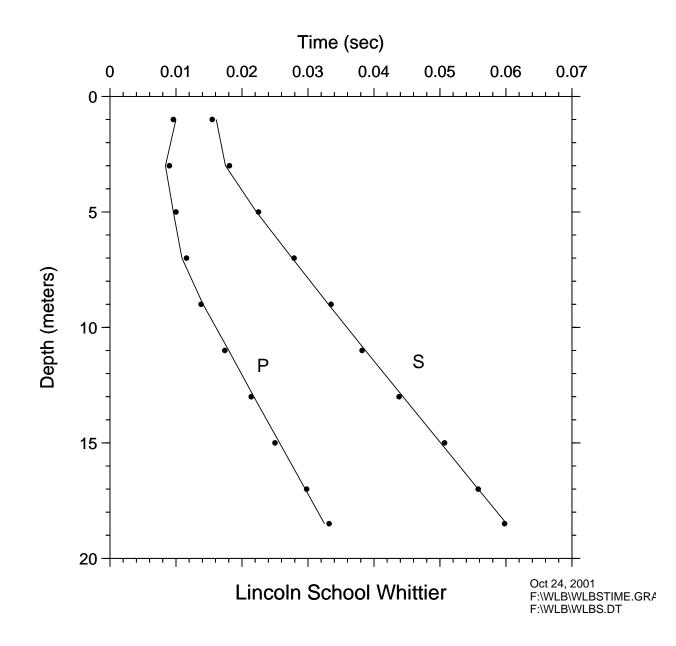
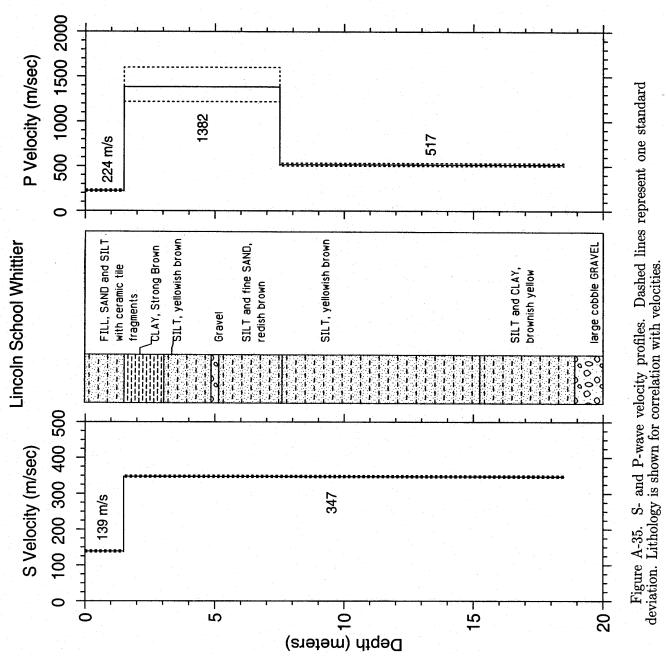



Figure A-34. Time-depth graph of P-wave and S-wave picks. Line segments are straightline interpolations of model predictions at the observation depths. The times for zero depth, not shown, are given by hoffset divided by the velocity in the uppermost layer (see accompanying tables of velocities for specific values).

summaries.
velocity
and
times
arrival
S-wave
A-13.
ABLE

33.98535 -118.04060 Hole_Code: 301 niæyers = 2	<pre>dtb(m) thk(m) v(m/s) vl(m/s) vu(m/s) utth(ft) thk(ft) v(ft/s) vu(ft/s) 1.5 1.5 139 135 142 4.9 4.9 4.5 444 466 18.5 17.0 347 344 351 60.7 55.8 1140 1130 1150 (a) = depth in meters d(ft) = depth in feet t(ft) = depth in feet t(ft) = depth in feet to receiver, along a slant path). For the arrival trans used in direction by 100 degrees. tvrt(s) = vertical travel time in seconds (from source trans used in direction by 100 degrees. tvrt(s) = vertical travel time computed from haumer house differing in direction by 100 degrees. tvrt(s) = vertical travel time computed from the model varg(m/s) = average of picks from traces obtained from haumer times used in the S-maxe model, the times are the average of picks from traces of the maxement times used in direction by 100 degrees. tvrt(s) = vertical travel time to the surface sigma, standard deviation normalized to the sigma, standard deviation normalized to the trafk(m) = thickness of layer in meters thk(m) = thickness of layer in meters thk(ft) = thickness of layer in meters v(ft/s) = upper limit of velocity in meters v(ft/s) = vepter limit of velocity in meters v(ft/s) = vepter limit of velocity in feet v(ft/s) = vepter limit of velo</pre>
<pre>Location: Lincoln School - Whittier: \$ Coordinates: 33 hoffset = 2.00 travel-time file: F:\WLB\WLBS.TT n</pre>	d(m) d(ft) tsl(s) tvrt(s) vavg(m/s) sig rsdl(sec) d 1.0 3.3 0.0155 0.0072 139 1 -0.0006 3.0 9.8 0.0181 0.0151 198 1 0.0005 5.0 16.4 0.0275 0.0279 0.2033 1 0.0003 7.0 23.0 0.0279 0.0282 0.00324 278 1 0.0003 9.0 23.1 0.0382 0.0382 256 1 -0.0006 11.0 23.1 0.0382 0.0382 256 1 -0.0006 13.0 42.7 0.0437 0.0437 302 1 -0.0006 15.0 49.2 0.0558 0.0555 307 1 -0.0006 17.0 55.8 0.0558 0.0558 0.0558 1 -0.0006 15.0 560.7 0.0598 0.0558 0.0558 1 -0.0002 18.5 60.7 0.0598 0.0558 0.0558 1 -0.0002 18.5 60.7

summaries.
velocity
and
times
arrival
S-wave
A-14.
ABLE

33.98535 -118.04060 Hole_Code: 301 nlayers = 3	<pre>dbb(m) v(m/s) vu(m/s) vu(m/s) dtb(ft) thk(ft) v(ft/s) vu(ft/s) vu(ft/s) 1.5 1.5 224 212 238 4.9 4.9 736 635 782 7.5 6.0 1382 1217 1539 24.6 19.7 4535 3994 5245 18.5 11.0 517 501 533 60.7 36.1 1695 1644 1749 d(m) = depth in meters d(m) = depth in feet to receiver, along a slant path). For the arrival times used in the S-mawe model, the times are the average of picks from traces obtained from haumer house differing in direction by 180 degres. torse depth to descript time traces obtained from haumer house differing in direction by 180 degres. torse depth to best picks from traces obtained from haumer house differing in direction by 180 degres. traces of picks from traces obtained from haumer house differing in direction by 180 degres. traces defined from haumer house differing in direction by 180 degres. traces of signa, stand deviation normalized to the standard deviation of layer in meters thb(m) = depth to bottom of layer in meters thb(m) = depth to bottom of layer in meters thb(m) = depth to bottom of layer in feet v(m/s) = velocity of layer in meters per second th(ft) = depth to bottom of layer in feet v(ft/s) = upper limit of velocity in feet per second v(ft/s) = upper limit of velocity in feet per second v(ft/s) = upper limit of velocity in feet per second v(ft/s) = upper limit of velocity in feet per second v(ft/s) = upper limit of velocity in feet per second v(ft/s) = upper limit of velocity in feet per second v(ft/s) = upper limit of velocity in feet per second v(ft/s) = upper limit of velocity in feet per second v(ft/s) = upper limit of velocity in feet per second v(ft/s) = upper limit of velocity in feet per second v(ft/s) = upper limit of velocity in feet per second v(ft/s) = upper limit of velocity in feet per second v(ft/s) = upper limit of velocity in feet per second v(ft/s) = upper limit of velocity in feet per second v(ft/s) = upper limit of velocity in feet per second v(ft/s) = upper limit of velocity in feet per second v(ft/s) = upper limit of veloc</pre>
Location: Lincoln School Whittier: P Coordinates: hoffset = 2.00 travel-time file: F:\WLB\WLBVERT.TT	d(m) d(ft) tsl(s) tvrt(s) vavg(m/s) sig tsdl(sec) 1.0 3.3 0.0096 0.0045 224 1 -0.0004 3.0 9.8 0.0096 0.0078 386 1 0.0004 5.0 16.4 0.0116 0.0092 542 1 0.0004 7.0 23.0 0.0138 646 1 -0.0006 9.0 25.5 0.0114 0.01738 647 1 -0.0006 11.0 32.1 0.01748 618 1 -0.0006 13.0 42.7 0.0214 0.01738 619 1 -0.0006 13.0 42.7 0.0224 587 1 -0.0006 13.0 42.7 0.0232 0.0323 572 1 0.0007 18.5 60.7 0.0332 0.0323 572 1 0.0007 18.5 60.7 0.0332 0.0323 572 1 0.0007

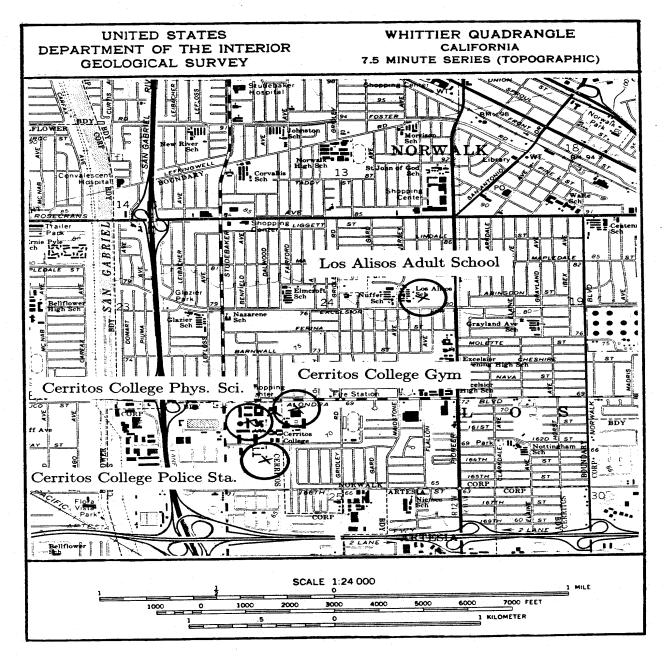


Figure A-36. Site location map for the borehole at Los Alisos Adult School.

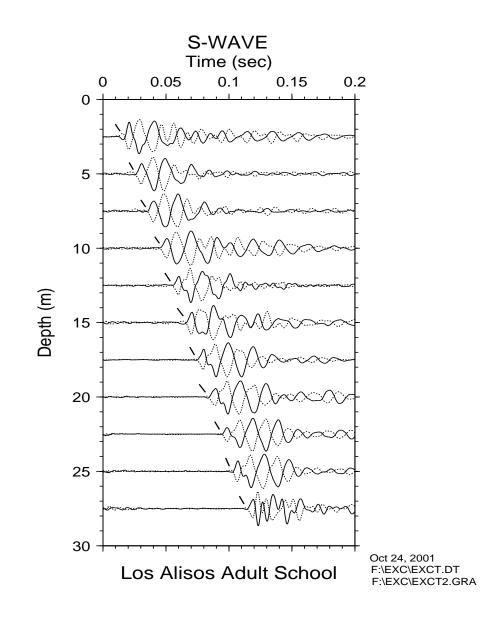


Figure A-37. Horizontal component record section (from impacts in opposite directions) superimposed for identification of S-wave onset. Approximate S-wave time picks are indicated by the hatch marks.

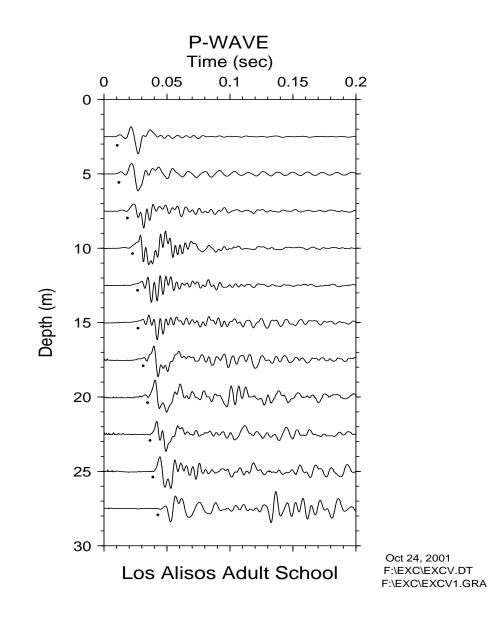


Figure A-38. Vertical component record section. Approximate P-wave arrivals are indicated by the dots.

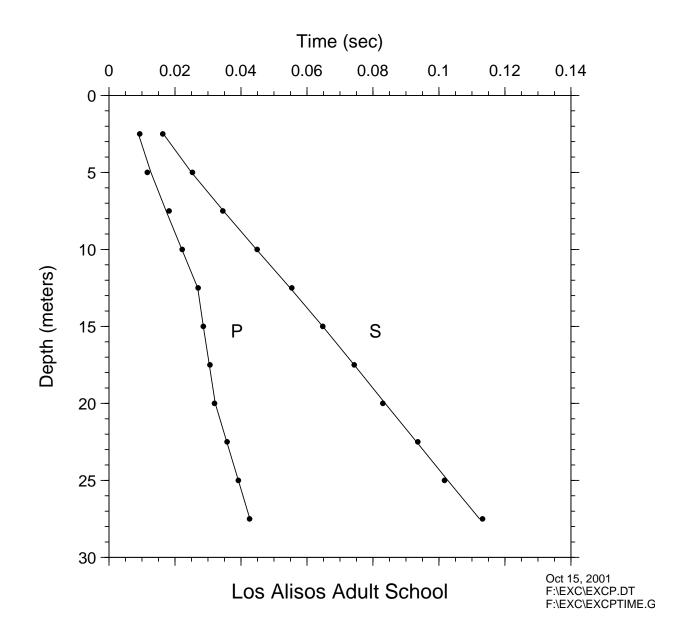
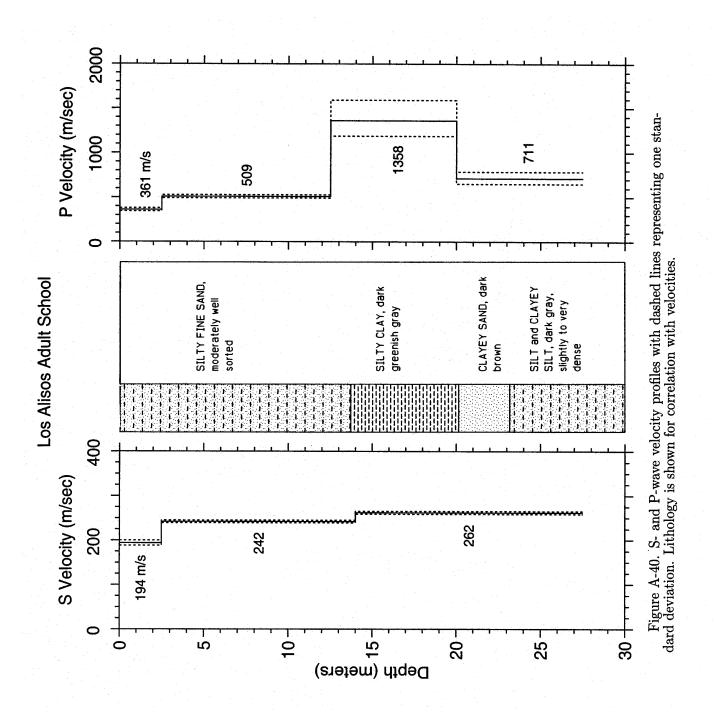



Figure A-39. Time-depth graph of P-wave and S-wave picks. Line segments are straightline interpolations of model predictions at the observation depths. The times for zero depth, not shown, are given by hoffset divided by the velocity in the uppermost layer (see accompanying tables of velocities for specific values).

ABLE A-15. S-wave arrival times and velocity summaries.

<pre>S Coordinates: avel-time file: F.\EXC\EXCS.TT avel-time file: F.\EXC\EXCS.TT turt(s) vavg(m/s) sig rsdl(sec) 0.0129 194 1 -0.0003 0.0133 224 1 -0.0003 0.0642 231 1 0.0000 0.0642 231 1 0.0000 0.0933 240 1 -0.0000 0.0929 242 1 0.0000 0.0929 242 1 0.0000 0.01119 246 1 0.0000 0.01119 246 1 0.0000</pre>	33.89560 -118.08427 Hole_Code: 302 nlayers = 3	<pre>dtb(m) thk(m) v(m/s) v1(m/s) vu(m/s) dtb(ff) thk(ff) v(ff/s) vu(ff/s) 2.5 2.5 194 188 200 8.2 8.5 636 618 656 14.0 11.5 242 239 265 90.2 44.3 859 849 870 27.5 13.5 262 259 265 90.2 44.3 859 849 870 d(m) = depth in meters d(ff) = depth in meters d(ff) = depth in feet to receiver, along a slaut path). For the arrival times used in the S-wave model, the times are the average of picks from traces obtained from hanner blows differing in direction by 180 degres. turt(s) = vertical travel time computed from hanner blows differing in direction by 180 degres. turt(s) = vertical travel time computed from hanner blows differing in direction by 180 degres. turt(s) = vertical travel time computed from hanner blows differing in direction by 180 degres. turt(s) = vertical travel time computed from hanner blows differing of picks from the surface to each depth, computed as avg vel = d(m)/vurt(s) sig = sigma, standard deviation of best picks thk(m) = depth to bottom of layer in meters thk(m) = depth to bottom of layer in meters thk(m) = depth to bottom of layer in meters v(m/s) = velocity of layer in meters per second dth(ff) = depth to bottom of layer in feet v(ff/s) = velocity of layer in feet per second vuft(fs) = upper limit of velocity in feet per second vuft(fs) = upper limit of velocity in feet per second vuft(fs) = upper limit of velocity in feet per second vuft(fs) = upper limit of velocity in feet per second vuft(fs) = upper limit of velocity in feet per second vuft(fs) = upper limit of velocity in feet per second vuft(fs) = upper limit of velocity in feet per second vuft(fs) = upper limit of velocity in feet per second vuft(fs) = upper limit of velocity in feet per second vuft(fs) = upper limit of velocity in feet per second vuft(fs) = upper limit of velocity in feet per secon</pre>
	lisos: S travel-time file: F:\EXC\EXCS.TT	<pre>tvrt(s) vavg(m/s) sig rsdl(sec) 0.0129 194 1 -0.0002 0.0232 215 1 0.0003 0.0335 224 1 -0.0001 0.0542 234 1 0.0000 0.0542 234 1 0.0000 0.0633 237 1 0.0000 0.0833 240 1 -0.0007 0.0124 244 1 -0.0007 0.0124 244 1 -0.0007 0.0124 246 1 0.0009 0.01119 246 1 0.0009</pre>

ABLE A-16. P-wave arrival times and velocity summaries.

vl(ft/s) 1129 1611 3861 2133	i source r the arr imes are from ham egrees. each deptl each deptl
V(ft/s) 1186 1669 4456 2334	ids (fron the to L, the to btained by 180 d by 180 d face to the to tailized to
thk (ft) 8.2 32.8 24.6 24.6	in secon stant part ave model traces ' traces' traces' traces' traces' d(m)/tvr
dtb(ft) 8.2 41.0 65.6 90.2	rs val time along a .cks from cks from nel time tity from vrg vel = rd deviat
: 302 vu(m/s) 380 1527 1527 785	<pre>n: = depth in meters = depth in feet = observed arrival time in seconds (from source = observed arrival time in seconds (from source to receiver, along a slant path). For the arrival to receiver, along a slant path). For the arrival times used in the S-wave model, the times are the average of picks from traces obtained from hammer blows differing in direction by 180 degrees. = vertical travel time computed from the model = average velocity from the surface to each depth, computed as avg_vel = d(m)/turt(s) = sigma, standard deviation normalized to the</pre>
33.89560 -118.08427 Hole_Code: nlayers = 4 dtb(m) thk(m) v(m/s) v1(m/s) v 2.5 2.5 361 344 12.5 10.0 509 491 20.0 7.5 1358 1185 27.5 7.5 711 650	
8427 F v(m/s) 361 1358 1358 711	<pre>Explanation: d(m) = d(ft) = tsl(s) = tvrt(s) = vavg(m/s) = sig =</pre>
-118.0 -118.0 thk(m) 2.5 10.0 7.5 7.5 7.5	-
33.89560 -1 nlayers = dtb(m) thb 2.5 1 12.5 1 20.0 20.0 27.5 2	
Coordinates: XC\EXCP.TT sig rsdl(sec) 2 0.0005 3 -0.0011 3 0.0001 3 0.0001 3 -0.0001	-0.000 0.0001 -0.0001
EXC/EX EXC/EX sig 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3) M N N 7
file: F:\EXC\EXCP.TT Vavg(m/s) sig rsdl(s 361 2 0.00 442 2 0.00 442 2 0.00 442 3 0.00 470 3 0.00 528 3 0.00	47 2 3 3 3 3 4 4 2 4 3 4 3 4 4 4 4 4 4 4 4
(-time /rt(s) 0.0169 0.0118 0.0167 0.0217 0.0266	0.0321 0.0356 0.0351 0.0426 0.0426
- <u><u> </u></u>	0.032000.035800.035800.0358000.0358000.0358000.0358000.0358000.0426000.0426000.0426000.04260000000000
i: Los A (ft) 2:00 d(ft) 2:00 16.4 16.4 16.4 15.8 15.8 15.8 15.8 15.1 16.4 16.4 16.4 16.4 16.4 16.4 16.4 16	6.2.1 8.2.0 9.0.2 9.0000000000
Location hoffset d(m) 2.5 5.0 7.5 10.0 12.5 12.5 15.0	22.00

stands deviation of best picts standard deviation of best picts rsdl(sec)= residual (observed - fitted travel time), in secs dtb(m) = depth to bottom of layer in meters v(m/s) = velocity of layer in meters per second vl(m/s) = lover limit of velocity in meters per second (see text for explanation of velocity limits) vu(m/s) = depth to bottom of layer in feet thk(th) = thickness of layer in feet v(ft/s) = upper limit of velocity in meters per second dtb(tt) = thickness of layer in feet v(ft/s) = upper limit of velocity in feet v(ft/s) = upper limit of velocity in feet per second vu(ft/s) = upper limit of velocity in feet per second

(ft/s) 1248 1730 5218 2575 2575

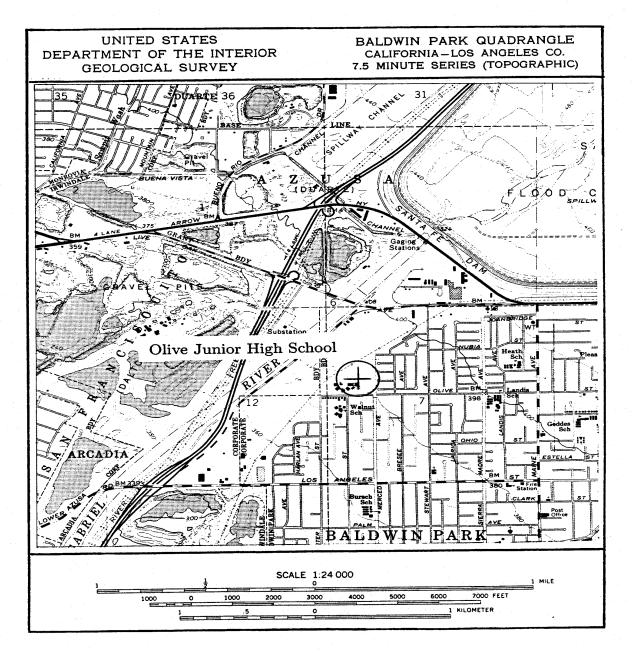


Figure A-41. Site location map for the borehole at Olive Junior High School. The accelerograph is located approximately 46 meters from the borehole.

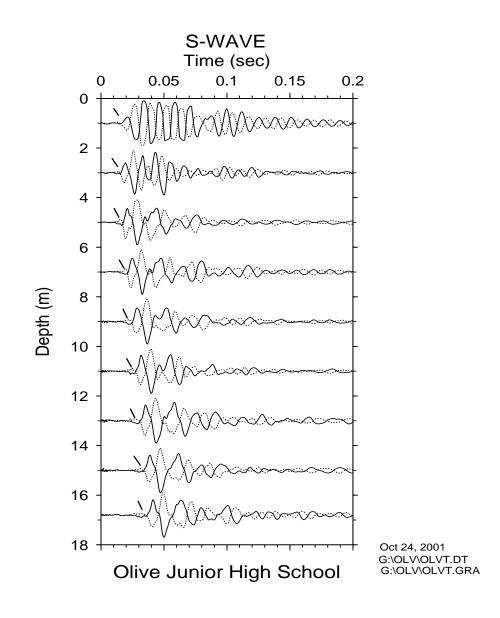


Figure A-42. Horizontal component record section (from impacts in opposite directions) superimposed for identification of S-wave onset. Approximate S-wave time picks are indicated by the hatch marks.

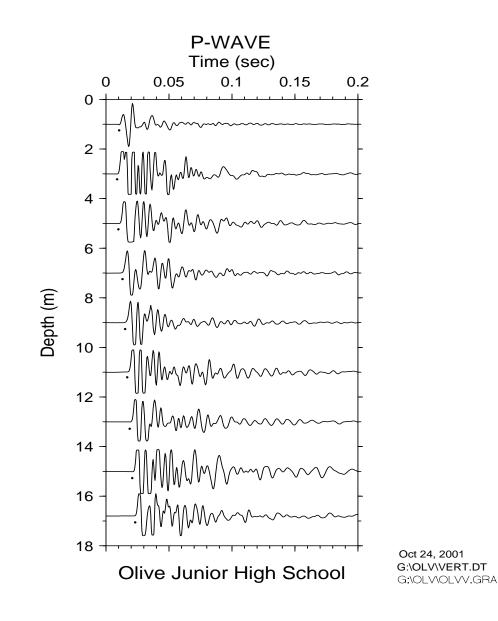


Figure A-43. Vertical component record section. Approximate P-wave arrivals are indicated by the dots.

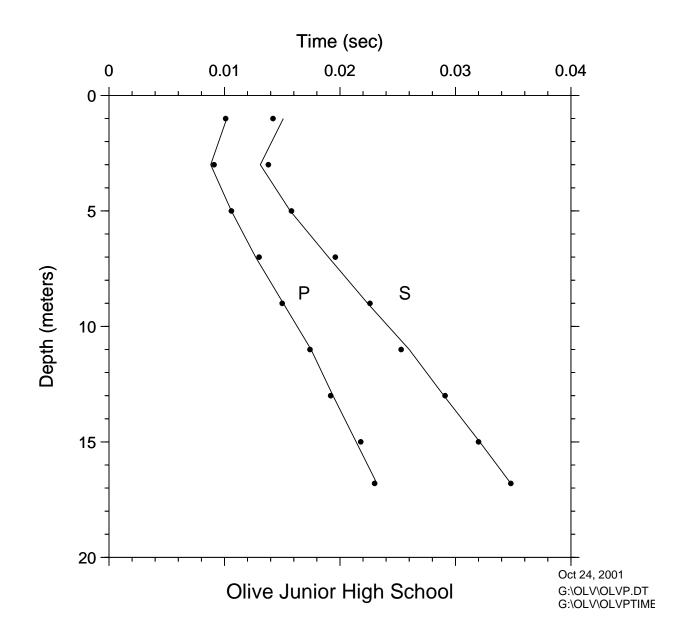
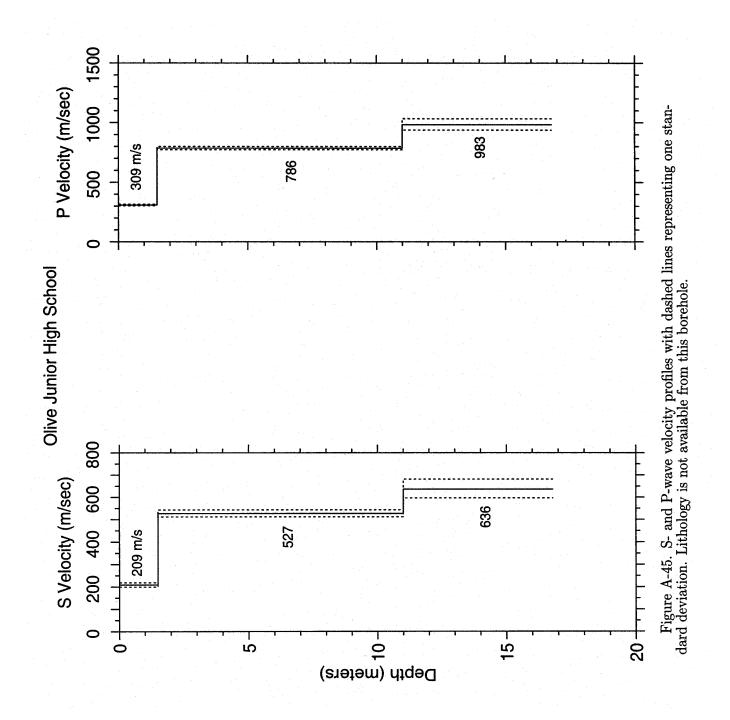



Figure A-44. Time-depth graph of P-wave and S-wave picks. Line segments are straightline interpolations of model predictions at the observation depths. The times for zero depth, not shown, are given by hoffset divided by the velocity in the uppermost layer (see accompanying tables of velocities for specific values).

summaries.
velocity
and
times
arrival
S-wave
A-17.
ABLE

L17.97409 Hole_Code: 303 3	<pre>thk(m) v(m/s) v1(m/s) v1(m/s) v1(ft/s) v1(ft/s) v1(ft/s) 1.5 209 200 219 4.9 4.9 685 655 718 9.5 527 512 543 36.1 31.2 1728 1679 1781 5.8 636 597 681 55.1 19.0 2087 1957 2235 5.8 depth in acters d(m) = depth in meters d(ft) = depth in feet to receiver, along a slant path). For the arrival times used in the S-avve model, the times arrival times used in the S-avve model, the times are the average of picks from traces obtained from haumer hlow differing in direction by 100 degrees. turt(s) = vertical travel time computed from the model vavg(m/s) = signa stant path). For the arrival times used in the S-avve model, the times are the average of picks from traces obtained from times vertical travel time computed from the model vavg(m/s) = vertical travel time computed from the model vavg(m/s) = vertical travel time computed from the standard deviation of hest picks th(m) = thickness of layer in meters th(m) = thickness of layer in meters th(m) = thickness of layer in meters v(m/s) = upper limit of velocity in meters per second v1(ft/s) = lower limit of velocity in meters per second v1(ft/s) = upper limit of velocity in feet v(ft/s) = upper limit of velocity in feet per second v1(ft/s) = upper limit of velocity in feet per second v1(ft/s) = upper limit of velocity in feet per second v1(ft/s) = upper limit of velocity in feet per second v1(ft/s) = upper limit of velocity in feet per second v1(ft/s) = upper limit of velocity in feet per second v1(ft/s) = upper limit of velocity in feet per second v1(ft/s) = upper limit of velocity in feet per second v1(ft/s) = upper limit of velocity in feet per second v1(ft/s) = upper limit of velocity in feet per second v1(ft/s) = upper limit of velocity in feet per second v1(ft/s) = upper limit of velocity in feet per second v1(ft/s) = upper limit of velocity in feet per second v1(ft/s) = upper limit of velocity in feet per second v1(ft/s) = upper limit of velocity in feet per second v1(ft/s) = upper limit of velocity in feet per second v</pre>
34.10073 -117.97409 nlayers = 3	dtb (m) thk 1.5 1 11.0 9 16.8 5 5
<pre>Location: 0live Jr. High School: S Coordinates: hoffset = 3.00 travel-time file: G:\0LV\0LVS.TT</pre>	d(m) d(ft) tsl(s) tvrt(s) sig rsdl(sec) 1.0 3.3 0.0142 0.0048 209 2 -0.0009 3.0 9.8 0.0138 362 1 0.0001 7.0 23.0 0.0138 362 1 0.0006 9.0 0.0196 0.0138 362 1 0.0006 9.0 23.0 0.0196 0.0176 397 1 0.0001 9.0 23.0 0.0196 0.0176 397 1 0.0001 9.0 25.1 0.0256 0.0214 420 1 0.0001 11.0 36.1 0.0256 0.0214 426 1 0.0001 15.0 49.2 0.0320 0.0343 489 1 0.0000 16.8 55.1 0.0343 489 1 0.0000 16.8 55.1 0.0343 489 1 0.0000

sumaries.
velocity
and
times
arrival
P-wave
A-18.
ABLE

34.10073 -117.97409 Hole_Code: 303 nlayers = 3	<pre>dtb(m) thk(m) v(m/s) v1(m/s) vt(m/s) vt(ht/s) v1(tt/s) vu(tt/s) 1.5 1.5 309 302 316 4.9 4.9 1013 990 1038 11.0 9.5 786 772 800 35.1 19.0 3223 3075 3386 11.0 9.5 786 772 800 35.1 19.0 3223 3075 3386 16.8 5.8 983 937 1032 55.1 19.0 3223 3075 3386 1(m) = depth in meters</pre>
Location: Olive Jr. High School: P Coordinates: (hoffset = 3.00 travel-time file: G:\OLV\OLVP.TT	d(m) d(ft) tsl(s) tvrt(s) sag rsdl(sec) 1.0 3.3 0.0101 0.0032 309 1 -0.0001 3.0 9.8 0.0091 0.0068 444 1 0.0002 5.0 16.4 0.0106 0.0093 537 1 0.0002 7.0 23.0 0.0119 591 1 0.0002 9.0 23.0 0.0119 591 1 0.0002 9.0 23.0 0.0119 591 1 0.0002 9.1 36.1 0.0174 625 1 -0.0001 11.0 36.1 0.0179 0.0144 655 1 -0.0002 13.0 42.7 0.0179 0.0119 685 1 -0.0002 13.0 42.7 0.0123 0.0120 6649 1 -0.0002 15.0 49.2 0.0230 0.0228 736 1 -0.0002 16.8 55.1 0.0230 0.0228 736 1 -0.0002

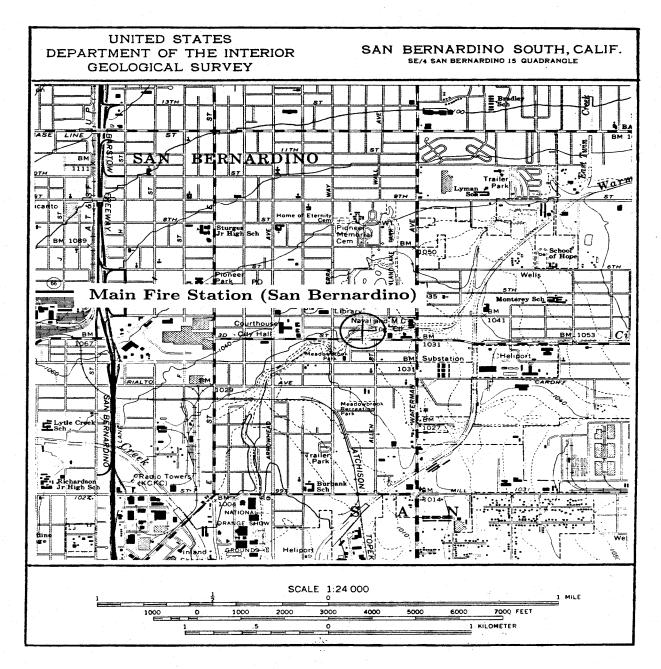
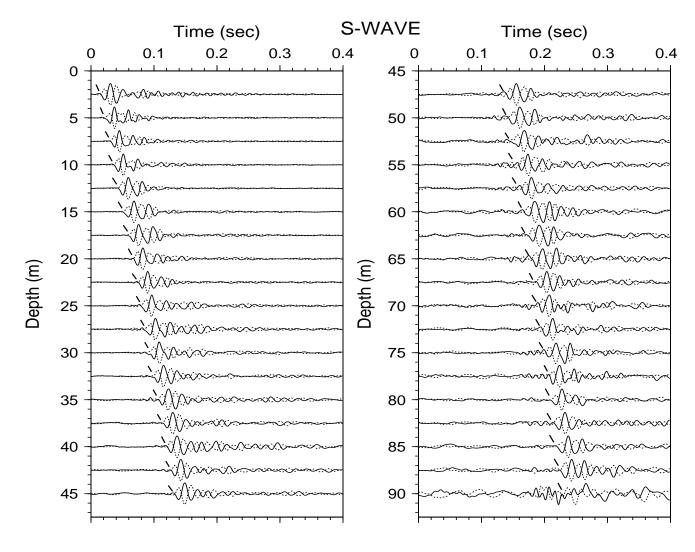



Figure A-46. Site location map for the borehole at San Bernardino Main Fire Station.

San Bernardino Main Fire Station

Figure A-47. Horizontal component record section (from impacts in opposite directions) superimposed for identification of S-wave onset. Approximate S-wave time picks are indicated by the hatch marks.

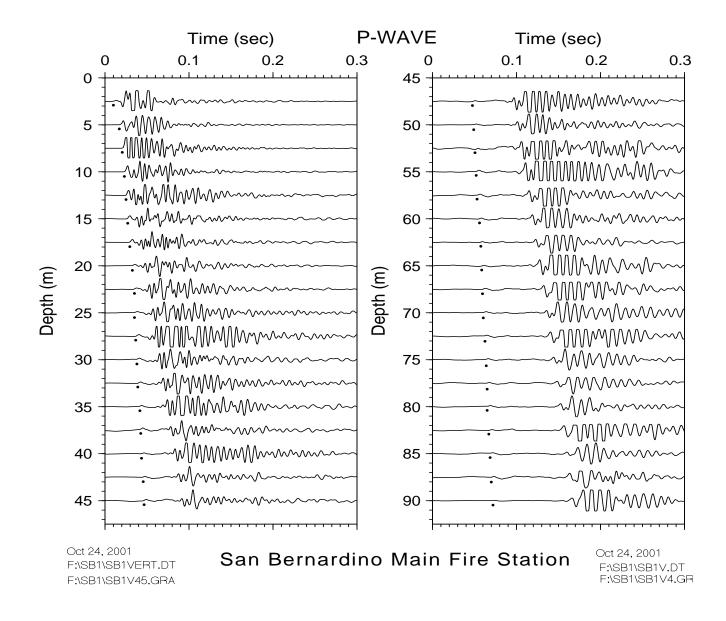
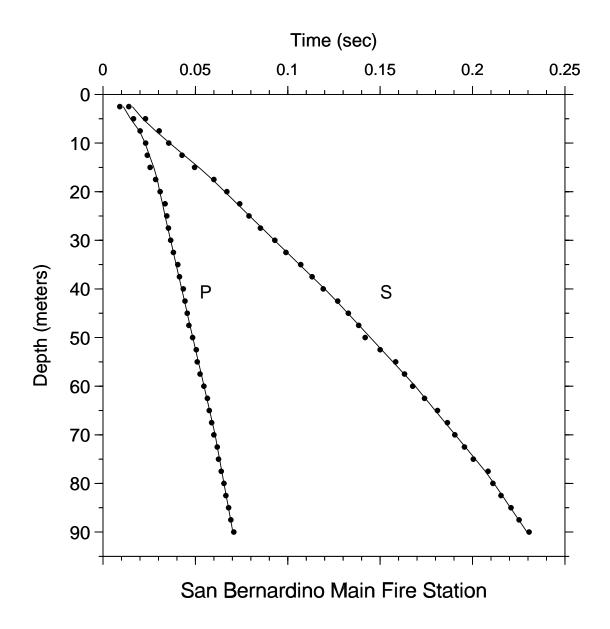
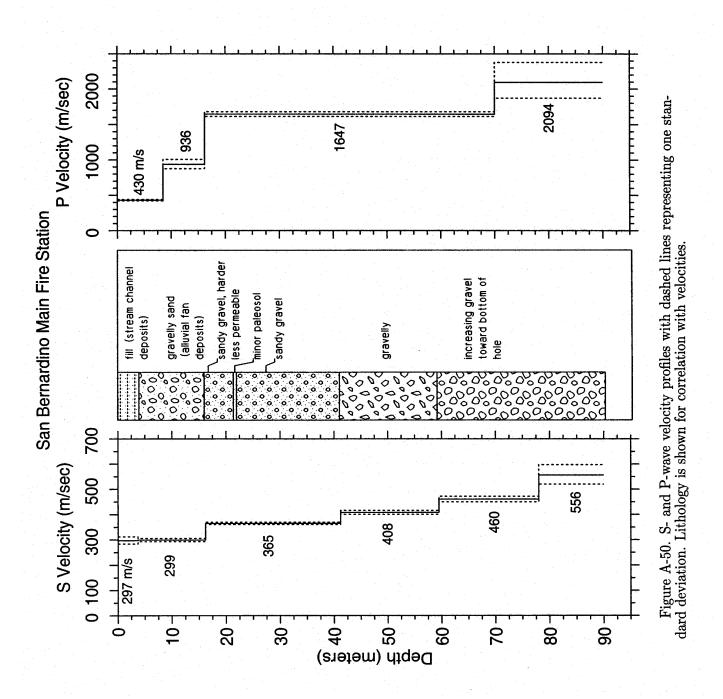




Figure A-48. Vertical component record section. Approximate P-wave arrivals are indicated by the dots.

- d_obs
- d obs

Figure A-49. Time-depth graph of P-wave and S-wave picks. Line segments are straightline interpolations of model predictions at the observation depths. The times for zero depth, not shown, are given by hoffset divided by the velocity in the uppermost layer (see accompanying tables of velocities for specific values).

summaries.
velocity
and
times
arrival
S-wave
A-19.
ABLE

	5		<pre>\$ dtb(ft) thk(ft) v(ft/s) v1(ft/s) 2 12.1 12.1 976 932 1024</pre>	53.1 41.0 982 962	135.2 82.0 1197 1182	195.2 60.0 1339 1314	2 255.3 80.7 1511 1475 1548 17 295.3 39.4 1824 1706 1960					in meters	feet	observed arrival time in seconds (from source	to receiver, along a slant path). For the arrival	times used in the S-wave model, the times are the	average of picks from traces obtained from hammer	blows differing in direction by 180 degrees.		average velocity from the surface to each depth,		sigma, standard deviation normalized to the	of best picks	(observed - fitted travel time), in secs	depth to bottom of layer in meters	unitances of tayer in meters velocity of laver in meters ber second	lower limit of velocity in weters ner second		upper limit of velocity in meters per second	to bottom of layer in feet	thickness of layer in feet	velocity of layer in feet per second	рег	limit of velocity in feet per second	
	Hole_Code: 305		s) vl(m/s) vu(m/s) 7 284 312	293	360	401	400 450 4/2 556 520 597				Vin lanation :	dent.h	= depth	"	to receiv	times use	average o		II	vavg(m/s)= average v	computed	= sigma, st		= ()=			"	. –	II	= depth	thk(ft) = thickness		= lower	vu(ft/s) = upper lim	
	34.10534 -117.28201	nlayers = 6	dtb(m) thk(m) v(m/s) 3.7 3.7 297	12.5	25.0	18.3	/0.0 10.5 400 90.0 12.0 556				7 mm 1 c	(m)p	d(ft)	ts1(s)					tvrt (s)	VaV		sig	:	rsd		v (m/s)	TT 1 (m / c)	-	(s/m) ma	dtb(ft)	thk	v(ft/s)	v1()	() na	
arrival times and velocity summaries.	<pre>Station: S Coordinates: file: F:\SB1\SB1S.TT</pre>		vavg(m/s) sig rsdl(sec) 297 l -0.0019	г	Ч		299 I -0.0024	Ч	Ч	д ,	5000 - T 6TS	1 –	-	Ч	ч	י רי	-1	Ч	- 	2	2	Ч	353 I 0.0002	' - -	359 I -0.0004	•	-	. –	-	ч			63	389 I 0.0002 392 3 0.0011	
S-wave	San Bernardino Fire 4.00 travel-time		d(ft) tsl(s) tvrt(s) v 8.2 0.0140 0.0084	0.0230	0.0304	0.0356	41.0 0.0426 0.0413 49.2 0.0496 0.0503	0.0600	0.0670	0.0740		0.0930	0.0990	0.1070	0.1132	0.1192	0.1270	0.1328	0.1384	0.1419	0.1500	0.1584	0.1632	0.1676 0.1576	2021 0.1740 0.1742 2.202		0 1904	0.1956	0.2004	0.2084	0.2110	0.2154	0.2208	287.1 0.2252 0.2249 295.3 0.2306 0.2294	
ABLE A-19.	Location: hoffset =		d(m) 2.5	5.0	7.5	10.0	15.0	17.5	20.0	22.5	25.0	30.0	32.5	35.0	37.5	40.0	42.5	45.0	47.5	50.0	52.5	55.0	57.5	0.09	0.15 01.5	67.5	70.0	72.5	75.0	77.5	80.0	82.5	85.0	87.5 90.0	

34.10534 -117.28201 Hole_Code: 305 nlayers = 4) v(m/s) vl(m/s) vu(m/s) dtb(ft) t 430 421 441 27.9	7.7 936 876 1006 53.1 25.3 3072 2873	53.8 1647 1614 1680 229.7 176.5 5402 5295 (2094 1870 2378 295.3 65.6 6870					Explanation:	II	d(ft) = depth in feet	tsl(s) = observed arrival time in seconds {from source	to receiver, along a slant path). For the arrival	times used in the S-wave model, the times are the	average of picks from traces obtained from hammer		tvrt(s) = vertical travel time computed from the model	vavg(m/s) = average velocity from the surface to each depth,	computed as avg_vel = d(m)/tvrt(s)	sig = sigma, standard deviation normalized to the	standard deviation	rsdl(sec)= residual (observed - fitted travel time), in secs	н	II		VI(m/s) = I over limit of velocity in meters per second			n			= lower limit of velocity in feet per	vu(ft/s) = upper limit of velocity in feet per second			
Station: P Coordinates: file: F:\SB1\SB1P.TT	sig rsdl(sec) 1 -0.0019	1 0.0016	1 0.0003	1 0.0002	1 -0.0010	1 -0.0020	1 -0.0008	1 0.0002	1 0.0015	1 0.0009	1 0.0003	1 0.0000	1 0.0000	1 0.0009	1 0.0004	3 0.0009	1 0.0003	1 0.0000	3 -0.0006	4 -0.0001	3 0.0003	1 -0.0006	2 -0.0006	3 0.0000	2 0.0003	Z -0.000Z	Z -0.0004	2 -0.0007	2 -0.0001	2 -0.0006	2 -0.0003	2 0.0000	2 -0.0002	T000.0 Z	2 0.0001	3 0.0005
Station: P Coordinat file: F:\SB1\SB1P.TT	vavg(m/s) : 430	430	430	468	520	562	608	660	707	750	789	825	858	888	916	942	967	989	1101	1031	1049	1067	1083	1099	1114	8211	1141	1154	1172	1190	1206	1223	1238	1253	1268	1282
dino Fire :avel-time	tvrt (s) 0.0058	0.0116	0.0174	0.0214	0.0240	0.0267	0.0288	0.0303	0.0318	0.0333	0.0349	0.0364	0.0379	0.0394	0.0409	0.0424	0.0440	0.0455	0.0470	0.0485	0.0500	0.0516	0.0531	0.0546	0.0561	0.0576	0.0591	0.0607	0.0619	0.0630	0.0642	0.0654	0.0666	0.0678	0.0690	0.0702
ernar tı	tsl(s) 0.0091	0.0165	0.0201	0.0231	0.0240	0.0255	0.0285	0.0309	0.0336	0.0345	0.0354	0.0366	0.0381	0.0405	0.0414	0.0435	0.0444	0.0456	0.0465	0.0485	0.0505	0.0510	0.0525	0.0546	0.0565	0.0575	0.0588	0.0600	0.0618	0.0625	0.0640	0.0655	0.0665	0.0680	0.0692	0.0708
	d(ft) 8.2	16.4	24.6	32.8	41.0	49.2																											270.7			
Location: hoffset =	d(m) 2.5	5.0	7.5	10.0	12.5	15.0	17.5	20.0	22.5	25.0	27.5	30.0	32.5	35.0	37.5	40.0	42.5	45.0	47.5	50.0	52.5	55.0	57.5	60.0	62.5	65.0	67.5	70.0	72.5	75.0	77.5	80.0	82.5	85.0	87.5 200	90.0

ABLE A-20. P-wave arrival times and velocity summaries.

Figure A-51. Site location map for the borehole at Santa Anita Golf Course.

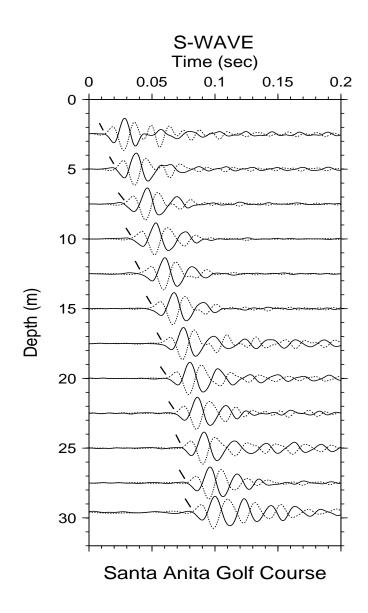


Figure A-52. Horizontal component record section (from impacts in opposite directions) superimposed for identification of S-wave onset. Approximate S-wave time picks are indicated by the hatch marks.

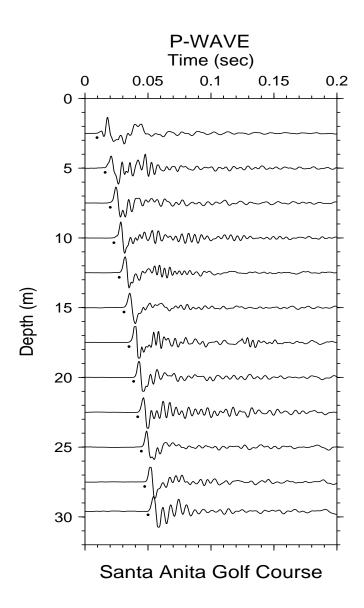


Figure A-53. Vertical component record section. Approximate P-wave arrivals are indicated by the dots.

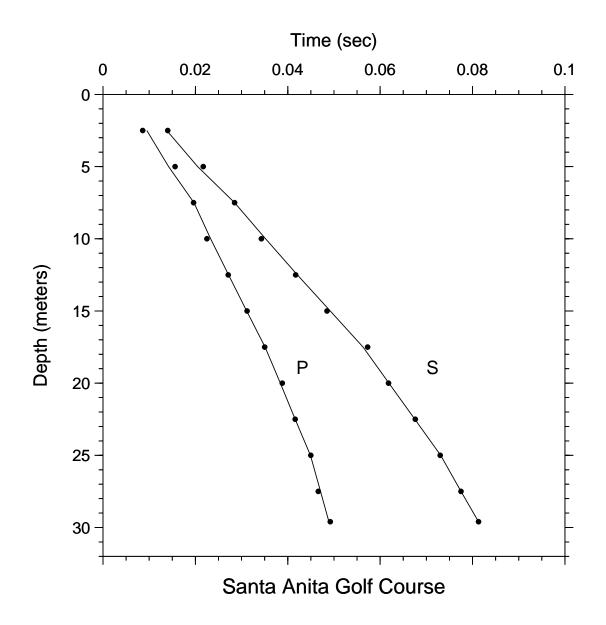
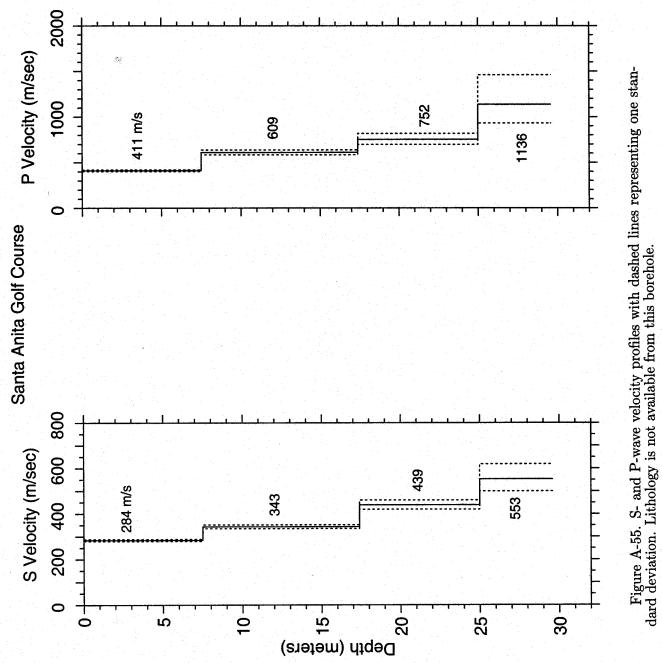



Figure A-54. Time-depth graph of P-wave and S-wave picks. Line segments are straightline interpolations of model predictions at the observation depths. The times for zero depth, not shown, are given by hoffset divided by the velocity in the uppermost layer (see accompanying tables of velocities for specific values).

ABLE A-21. S-wave arrival times and velocity summaries.

-118.03070 Hole_Code: 304 = 4	<pre>thk(m) v(m/s) v1(m/s) vu(m/s) dtb(ft) thk(ft) v(ft/s) vu(ft/s) vu(ft/s) 7.5 284 279 288 24.6 24.6 931 917 946 9.9 343 335 352 57.1 32.5 1126 1099 1114 7.6 439 420 460 82.0 24.9 1441 1377 1510 4.6 553 500 619 97.1 15.1 1814 1640 2031 d(m) = depth in meters d(ft) = depth in meters d(ft) = depth in feet d(m) = depth in feet for secred arrival time in seconds (from source to receiver, short and a short path). For the arrival times used in the S-wave model, the times are the average of picks from traces obtained from hammer turt(s) = vertical travel time computed from the model vworg(m/s) = average velocity from the surface to each depth, sig = sigma, standard deviation normalized to the standard deviation of hest picks toth(m) = depth to bottom of layer in meters thk(m) = thickness of layer in meters thk(ft) = uventing to velocity in meters thk(ft) = uvelocity of layer in meters thk(ft) = uvelocity of layer in feet v(ft/s) = uvelocity of layer in feet thk(ft) = thickness of layer in feet v(ft/s) = uvelocity in feet v(ft/s) = uvelocity of layer in feet thk(ft) = thickness of layer in feet v(ft/s) = uvelocity of layer in feet v(ft/s) = uvelo</pre>
34.13096 -118.03070 nlayers = 4	dtb (m) 7.5 17.4 25.0 29.6 29.6
<pre>Location: Santa Anita Golf Course: S Coordinates: hoffset = 3.00 travel-time file: F:\SAG\SAGS_RE.TT</pre>	$\begin{array}{llllllllllllllllllllllllllllllllllll$

ABLE A22. P-wave arrival times and velocity summaries.

	vu (ft/s) 1381 2091 2679 4785
	1(ft/s) 1317 1915 2285 3052 3052 source
	v(ft/s) 1348 1999 2466 3727 3727 (from
	o(ft) thk(ft) v(ft/s) v 24.6 24.6 1348 57.1 32.5 1999 82.0 24.9 2466 97.1 15.1 3727 97.1 15.1 transformed time in seconds (from
	dtb(ft) 24.6 57.1 82.0 97.1 rs rs val time
304	<pre>/s) vu(m/s) dth 201 421 2 84 637 9 96 817 9 130 1459 9 130 1459 9 146pth in meters depth in feet observed arrival</pre>
Hole_Code:	
03075 I	v(m/s) v1(r 411 609 752 1136 1136 a(m) d(m) e(ft) f ts1(s) f ts1(s)
5 -118.(5 = 4	thk (m) 7.5 7.6 4.6 4.6
34.13096 -118.03075 nlayers = 4	dtb (m) 17.45 25.0 29.6 29.6
dinates: 3P.TT	<pre>sig rsdl(sec) 1 -0.0014 1 -0.0014 1 -0.0001 1 -0.0008 1 0.0000 1 0.0001 1 -0.0001 1 -0.0001 1 -0.0001 1 -0.0001 1 0.0001 1 0.0003</pre>
Coor SAG\SA(
Golf Course: P Coordinates: el-time file: F:\SAG\SAGP.TT	vavg(m/s) 411 411 411 447 447 491 505 545 560 587 587 587 587
Golf Cou el-time	tvrt(s) 0.0061 0.0122 0.0122 0.01224 0.0265 0.0306 0.0346 0.0346 0.0346 0.0346 0.0346 0.0346 0.0346 0.0346 0.0346 0.0416 0.0416
Anita trav	tsl(s) 0.0086 0.0156 0.0156 0.0255 0.0271 0.0312 0.0312 0.0312 0.0312 0.0456 0.0450 0.0450 0.0450
1: Santa = 3.00	d(ft) 16.4 16.4 16.4 24.6 41.0 57.4 49.2 57.4 49.2 57.4 73.8 82.0 90.2 97.1
Location: hoffset =	a(m) 2(m) 2.5 5.0 5.0 10.0 12.5 12.5 22.5 22.5 23.5 23.5 23.5 23.5 23.5 2

xplanation: d(m) = d(ft) = tsl(s) =	depth in meters depth in feet observed arrival time in seconds (from source
	to receiver, along a slant path). For the arrival times used in the S-wave model, the times are the average of picks from traces obtained from hammer blows differing in direction by 180 degrees.
tvrt(s) = vavg(m/s)=	
sig =	sigma, standard deviation normalized to the standard deviation of best picks
rsdl(sec)= dtb(m) =	residual (observed - fitted travel time), in secs depth to bottom of layer in meters
= (s/m)TA	lower limit of velocity in meters per second (see text for explanation of velocity limits)
vu(m/s) = dtb(ft) = thk(ft) =	upper limit of velocity in meters per second depth to bottom of layer in feet thickness of layer in feet
v(ft/s) = vl(ft/s) = vu(ft/s) =	velocity of layer in feet per second lower limit of velocity in feet per second upper limit of velocity in feet per second

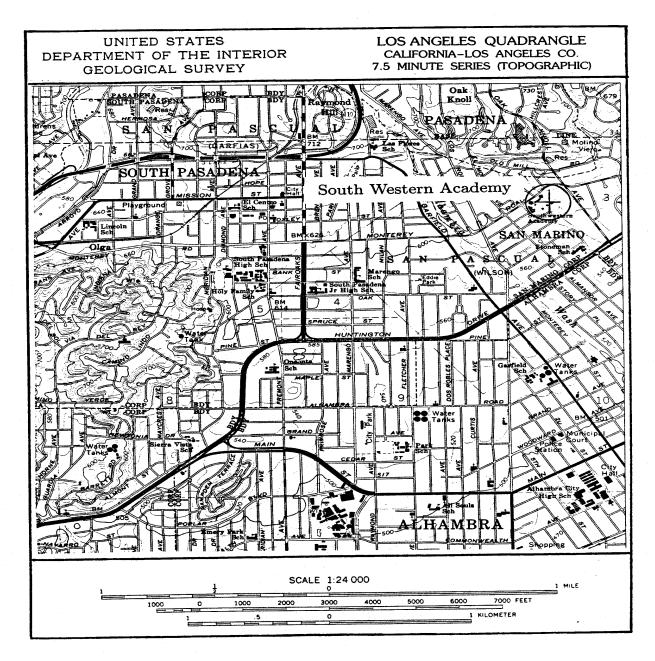


Figure A-56. Site location map for the borehole at South Western Academy. The accelerograph is located approximately 10 meters from the borehole.

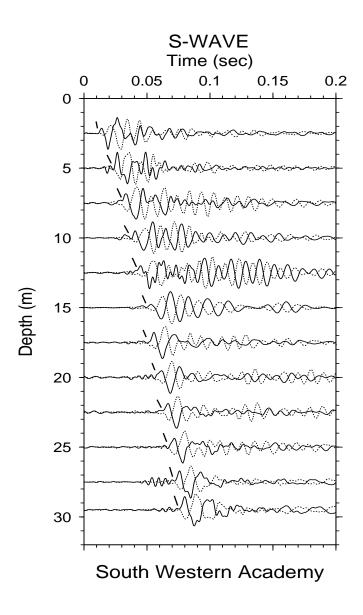


Figure A-57. Horizontal component record section (from impacts in opposite directions) superimposed for identification of S-wave onset. Approximate S-wave time picks are indicated by the hatch marks.

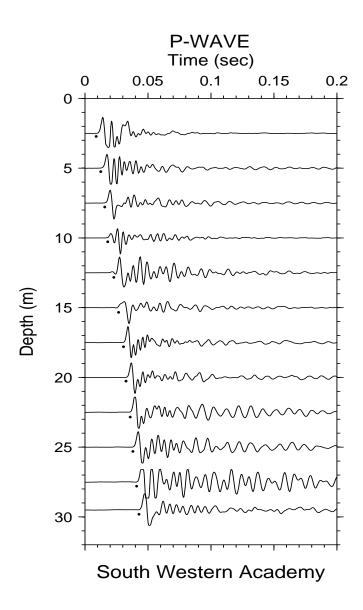


Figure A-58. Vertical component record section. Approximate P-wave arrivals are indicated by the dots.

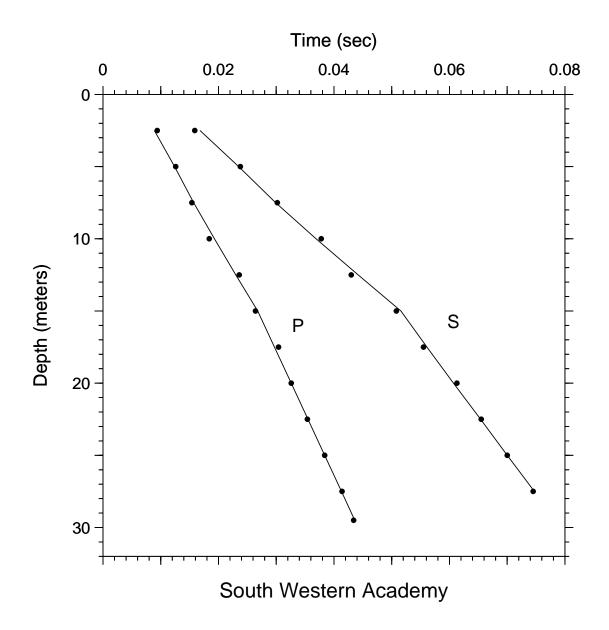
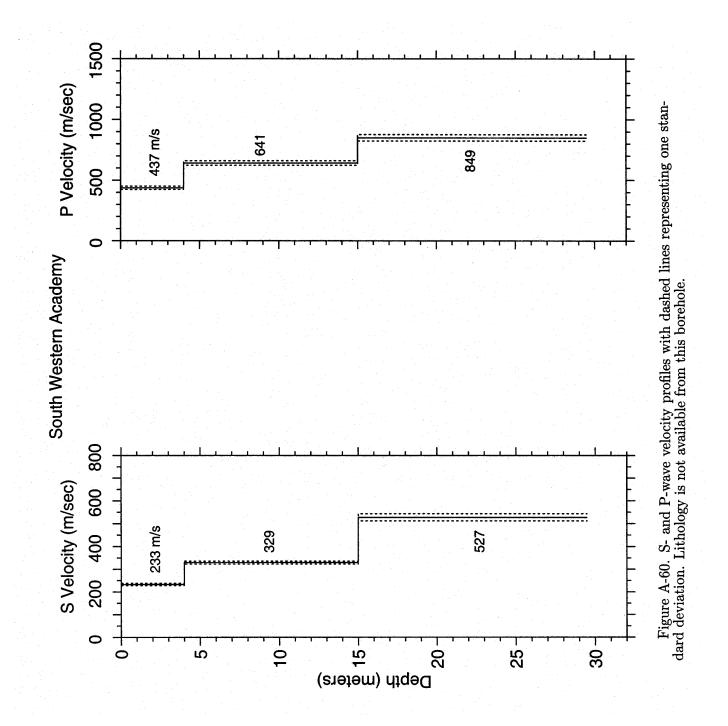



Figure A-59. Time-depth graph of P-wave and S-wave picks. Line segments are straightline interpolations of model predictions at the observation depths. The times for zero depth, not shown, are given by hoffset divided by the velocity in the uppermost layer (see accompanying tables of velocities for specific values).

summaries.
velocity
and
times
arrival
S-wave
A23.
ABLE

		÷	_	~.	_									
		vu(ft/s)	781	1102	1781									•
		vl(ft/s)	746	1059	1678								source	
		v(ft/s)	763		1728								ds (from	
		thk (ft)	13.1	36.1	47.6								time in seconds	
		dtb(ft)	13.1	49.2	96.8						rs		val time	
306		vu(m/s)	238	336	543						h in mete	depth in feet	= observed arrival time in seconds (from source	
Hole_Code:		vl(m/s)	227	323	511					ion:		= dept1	= obse:	1
13050 H		v (m/s	233	329	527					Explanation:	d (m)	d(ft)	tsl(s)	
-118.	ຕ ແ	thk (m)	4.0	11.0	14.5									
34.11533 -118.13050	nlayers =	dtb(m)	4.0	15.0	29.5									
Coordinates: A\SUAS RE.TT	ı	sig rsdl(sec)	-0.0009	0.0003	0.0003	0.0009	-0.0012	-0.0008	-0.0006	0.0006	0.0001	0.0000	-0.0002	
Coor(SWA\SWA		sig r	ч	ч	Ч	ч	ო	Ч	0	Ч	Ч	г	Ч	
ern Academy: S Coordinates: avel-time file: F:\SWA\SWAS RE.TT		vavg(m/s)	233	247	270	282	291	296	316	333	347	359	370	
n Academ el-time		tvrt (s)	0.0107	0.0202	0.0278	0.0354	0.0430	0.0506	0.0553	0.0601	0.0648	0.0696	0.0743	
Western trav		csl(s)	0.0159	0.0238	0.0302	0.0378	0.0430	0.0508	0.0555	0.0613	0.0655	0.0700	0.0745	
South : 3.00												82.0 (
Location: South Western Academy: S hoffset = 3.00 travel-time file:												25.0		

summaries.
velocity
and
times
arrival
P-wave
A-24.
ABLE

34.11533 -118.13050 Hole_Code: 306 niæyers = 3	<pre>dtb(m) v(m/s) v1(m/s) vu(m/s) dtb(ft) thk(ft) v(ft/s) v1(ft/s) vu(ft/s) 4.0 4.0 4.37 4.23 4.51 13.1 13.1 14.32 13.88 14.79 15.0 11.0 641 623 660 49.2 36.1 21.02 2042 2165 29.5 14.5 849 823 876 96.8 47.6 2785 2701 2874 (ft) = depth in meters d(ft) = depth in feet t(ft) = depth in feet t(ft) = depth in feet t(ft) = depth in feet to receiver, along a slant path). For the arrival times used in the S-wave model, the times are the average of picks from traces obtained from hammer blows differing in direction by 180 degrees. turt(s) = vertical travel time computed from hammer blows differing in direction by 180 degrees. turt(s) = vertical travel in exerct or each depth, sig = sigma, standard deviation of hest picks the meters blow of layer in meters the times of layer in feet v(m/s) = velocity of layer in meters per second the times of layer in feet v(ft/s) = velocity of layer in feet the times of layer in feet v(ft/s) = velocity of layer in feet v(ft/s) = upper limit of velocity in feet per second v1(ft/s) = upper limit of velocity in feet per second v1(ft/s) = upper limit of velocity in feet per second v1(ft/s) = upper limit of velocity in feet per second v1(ft/s) = upper limit of velocity in feet per second v1(ft/s) = upper limit of velocity in feet per second</pre>
<pre>Location: South Western Academy: P Coordinates: 34.1 hoffset = 3.00 travel-time file: F:\SWA\SWAP.TT nla</pre>	

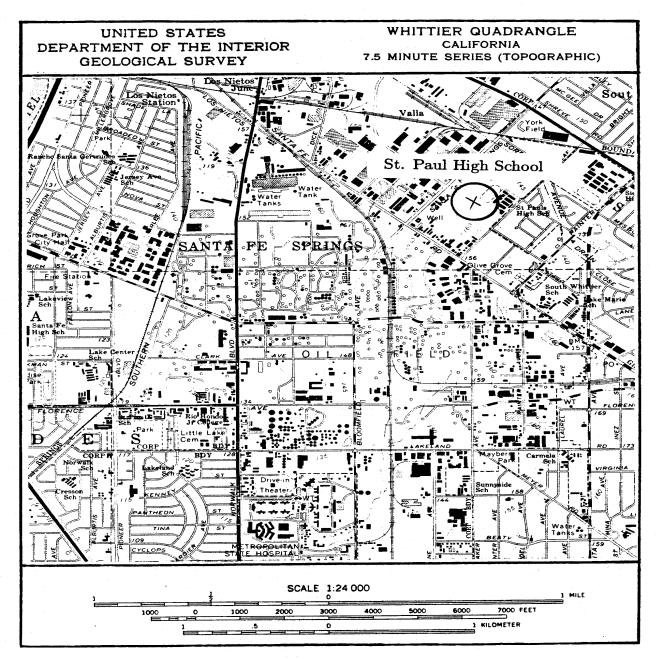


Figure A-61. Site location map for the borehole at St. Paul High School.

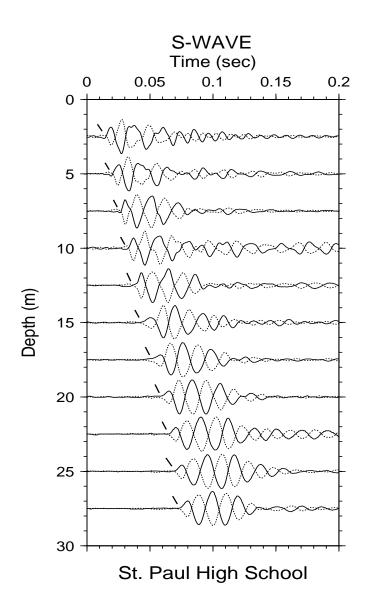


Figure A-62. Horizontal component record section (from impacts in opposite directions) superimposed for identification of S-wave onset. Approximate S-wave time picks are indicated by the hatch marks.

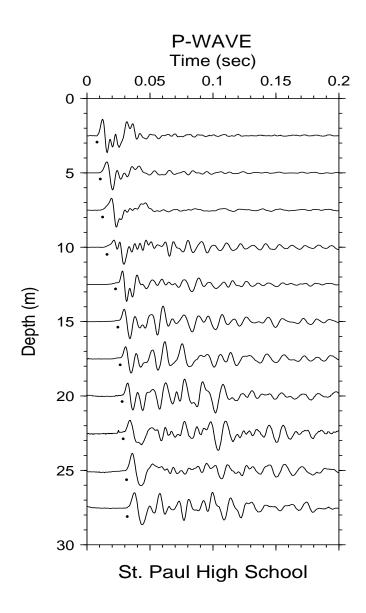


Figure A-63. Vertical component record section. Approximate P-wave arrivals are indicated by the dots.

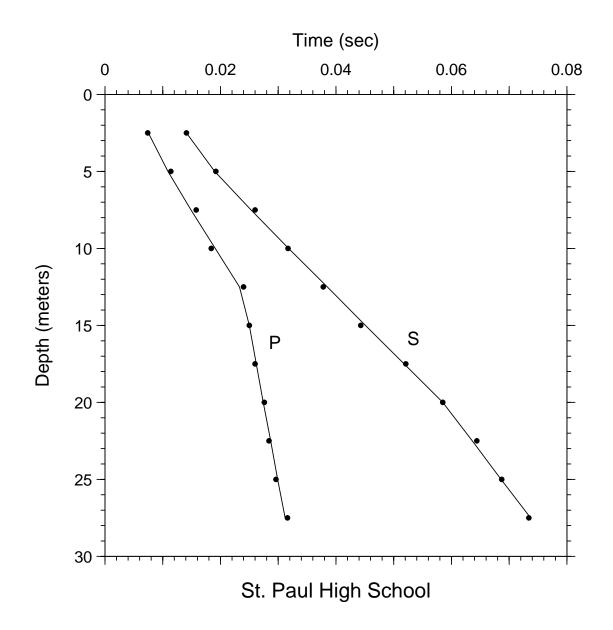
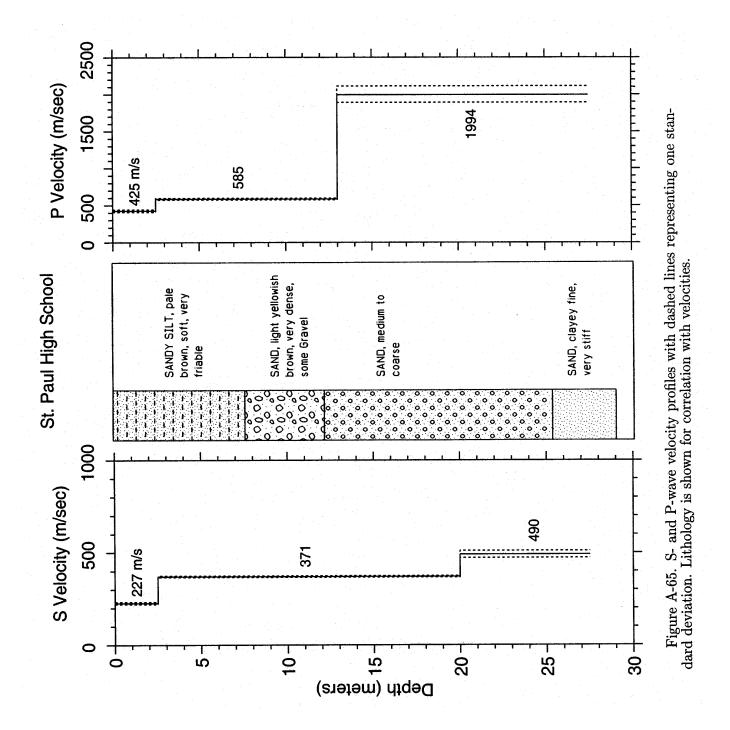



Figure A-64. Time-depth graph of P-wave and S-wave picks. Line segments are straightline interpolations of model predictions at the observation depths. The times for zero depth, not shown, are given by hoffset divided by the velocity in the uppermost layer (see accompanying tables of velocities for specific values).

sumaries.
velocity
and
times
arrival
S-wave
A-25.
ABLE

158 -118.05369 Hole_Code: 307 2rs = 3	<pre>up thk(m) v(m/s) vu(m/s) utbh(th) thk(th) v(tt/s) vu(tt/s) vu(tt/s) 2.5 227 221 233 8.2 8.2 8.2 744 723 766 3.7.5 371 357 375 65.6 57.4 1216 1203 1230 3.7.5 490 471 510 90.2 24.6 1608 1546 1574 (m) = depth in tet d(m) = depth in tet a(tr) = depth in tet ts1(s) = depth in tet ts1(s) = observed arrival time in seconds (from source to receiver, along a slant path). For the arrival times used in the S-mave model, the times are the average of picks from traces obtained from hammer times used in the S-mave model. The model tvrt(s) = vertical travel time computed from hammer houve differing in direction by 100 degrees. tvrt(s) = vertical travel time computed from the model vavg(m/s) average velocity from the surface to each depth, sig = sigma, travel time computed from the sores th(m) = depth to obtrom of layer in meters thk(m) = thicker in meters per second v(m/s) = upper limit of velocity in meters v(m/s) = upper limit of velocity in meters v(m/s) = upper limit of velocity in meters v(ft/s) = upper limit of velocity in meters v(ft/s) = upper limit of velocity in feet thk(tt) = thoress of layer in feet v(ft/s) = upper limit of velocity in meters v(ft/s) = upper limit of velocity in meters v(ft/s) = upper limit of velocity in feet per second v(ft/s) = upper limit of velocity in feet per second v(ft/s) = upper limit of velocity in feet per second v(ft/s) = upper limit of velocity in feet per second v(ft/s) = upper limit of velocity in feet per second v(ft/s) = upper limit of velocity in feet per second v(ft/s) = upper limit of velocity in feet per second v(ft/s) = upper limit of velocity in feet per second v(ft/s) = upper limit of velocity in feet per second v(ft/s) = upper limit of velocity in feet per second v(ft/s) = upper limit of velocity in feet per second v(ft/s) = upper limit of velocity in feet per second v(ft/s) = upper limit of velocity in feet per second v(ft/s) = upper limit of velocity in feet per second v(ft/s) = upper limit of velocity in feet per second v</pre>
33.95158 nlayers	dtb (m) 2.5 20.0 27.5 27.5
<pre>Location: St. Paul High School: S Coordinates: hoffset = 2.00 travel-time file: F:\STP\STPS.TT</pre>	d(m) d(ft) ts1(s) twrt(s) vavg(m/s) sig rsd1(sec) 2.5 8.2 0.0141 0.0110 227 1 0.0000 5.0 16.4 0.0122 0.0178 282 1 0.0001 7.5 24.6 0.0260 0.0245 306 1 0.0001 10.0 32.8 0.0317 0.0312 322 1 -0.0001 11.0 32.8 0.0378 0.0348 326 1 -0.0003 15.0 65.6 0.0585 0.0582 344 1 0.0003 22.5 73.8 0.0583 0.0684 366 1 0.0003 22.5 73.8 0.0734 0.0733 356 1 -0.0001 27.5 90.2 0.0684 0.6644 0.0683 374 1 -0.0001 27.5 90.2 0.0734 0.0735 374 1 -0.0001 27.5 90.2 0.0734 0.0735 374 1 -0.0001 27.5 90.2 0.0734 <td< td=""></td<>

sumaries.
velocity
and
times
arrival
P-wave
A-26.
ABLE

8 -118.05369 Hole_Code: 307 s = 3	<pre>thk(m) V(m/s) V1(m/s) Vu(m/s) dtb(ft) thk(ft) V(ft/s) V1(ft/s) Vu(ft/s) 2.5 425 408 442 8.2 8.2 1394 1340 1452 10.5 555 574 537 4.2 7 3.4.4 1919 1882 1955 10.5 555 574 537 4.2 7 3.4.4 1919 1882 1955 114.5 1994 1890 2111 90.2 47.6 5543 5200 6927 d(ft) = depth in meters d(ft) = depth in fect to ite conder from source to ite conder from source to ite conder from the arrival times used in the S-wave model. The times are the werenge of picks from traces obtained from haumer times used in the S-wave model. The times are the werenge of picks from traces obtained from haumer times used in the S-wave model. The times are the werenge of picks from traces obtained from haumer times used in the S-wave model. The times are the wavg(m/s) = averical travel time computed from the model vavg(m/s) = average velocity from the suffect to ite conduct deviation of agrees. tvrt(s) = vertical travel time computed from the model vavg(m/s) = average velocity to the suffect to ite conduct deviation of layer in meters thk(m) = depth to bottom of layer in meters v(m/s) = velocity of layer in feet thk(ft) = upper limit of velocity in meters v(ft/s) = velocity of layer in feet v(ft/s) = velocity of layer in feet v(ft/s) = velocity in feet per second v1(ft/s) = upper limit of velocity in feet v(ft/s) = velocity in feet per second v1(ft/s) = upper limit of velocity in feet v(ft/s) = velocity in feet per second v1(ft/s) = upper limit of velocity in feet v(ft/s) = velocity in feet per second v1(ft/s) = velocity in feet per second v1(ft/s) = upper limit of velocity in feet v(ft/s) = velocity</pre>
33.95158 nlayers	dtb (m) 2.5 23.5 23.5
<pre>Location: St. Paul High School: P Coordinates: 3 hoffset = 2.00 travel-time file: F:\STP\STPP.TT</pre>	$\begin{array}{llllllllllllllllllllllllllllllllllll$

APPENDIX—B Poisson's Ratios Table B-1. Poisson's ratio calculated from P- and S-wave velocity models for the Cerritos College Gymnasium site.

P wave - d2bot, pvel, for file: CGMP.VEL 6.00000 437.000 10.0000 348.000 29.4000 1563.00

S wave - d2bot, svel, for file: CGMS.VEL 2.50000 255.000 5.00000 288.000 12.5000 217.000 25.0000 249.000 29.4000 329.000

pssnrat d2bot p d2bot s d2bot thick pvel svel 2.500E+00 2.500E+00 2.500E+00 6.000E+00 4.370E+02 2.550E+02 0.24 6.000E+00 5.000E+00 5.000E+00 2.500E+00 4.370E+02 2.880E+02 0.12 6.000E+00 1.250E+01 6.000E+00 1.000E+00 4.370E+02 2.170E+02 0.34 1.000E+01 1.250E+01 1.000E+01 4.000E+00 3.480E+02 2.170E+02 0.18 1.250E+01 1.250E+01 2.500E+00 1.563E+03 2.170E+02 0.49 2.940E+01 2.500E+01 2.500E+01 1.250E+01 1.563E+03 2.490E+02 0.49 2.940E+01 2.940E+01 2.940E+01 2.940E+01 4.400E+00 1.563E+03 3.290E+02 0.48 Table B-2. Poisson's ratio calculated from P- and S-wave velocity models for the Cerritos College Physical Sciences Building site.

P wave - d2bot, pvel, for file: CPSP.VEL 353.000 2.50000 15.0000 517.000 1172.00 29.0000 S wave - d2bot, svel, for file: CPSS.VEL 2.50000 185.000 15.0000 218.000 29.0000 253.000 d2bot s d2bot thick svel pssnrat d2bot_p pvel 2.500E+00 2.500E+00 2.500E+00 2.500E+00 3.530E+02 1.850E+02 0.31 1.500E+01 1.500E+01 1.500E+01 1.250E+01 5.170E+02 2.180E+02 0.39 2.900E+01 2.900E+01 2.900E+01 1.400E+01 1.172E+03 2.530E+02 0.48 Table B-3. Poisson's ratio calculated from P- and S-wave velocity models for the Cerritos College Police Building site.

P wave - d2bot, pvel, for file: CPBP.VEL 9.00000 359.000 734.000 12.5000 89.8000 1739.00 S wave - d2bot, svel, for file: CPBS.VEL 3.00000 229.000 9.00000 204.000 23.0000 259.000 32.0000 295.000 46.0000 348.000 78.0000 418.000 89.8000 450.000 d2bot p d2bot s d2bot thick pvel svel pssnrat

uzbot_p	uzbut s	uzbot	UNITOR	h her	Sver	pssmat
9.000E+00	3.000E+00	3.000E+00	3.000E+00	3.590E+02	2.290E+02	0.16
9.000E+00	9.000E+00	9.000E+00	6.000E+00	3.590E+02	2.040E+02	0.26
1.250E+01	2.300E+01	1.250E+01	3.500E+00	7.340E+02	2.590E+02	0.43
8.980E+01	2.300E+01	2.300E+01	1.050E+01	1.739E+03	2.590E+02	0.49
8.980E+01	3.200E+01	3.200E+01	9.000E+00	1.739E+03	2.950E+02	0.49
8.980E+01	4.600E+01	4.600E+01	1.400E+01	1.739E+03	3.480E+02	0.48
8.980E+01	7.800E+01	7.800E+01	3.200E+01	1.739E+03	4.180E+02	0.47
8.980E+01	8.980E+01	8.980E+01	1.180E+01	1.739E+03	4.500E+02	0.46

Table B-4. Poisson's ratio calculated from the P- and S-wave velocity model: for the Corps of Engineer's site.

P wave - d2bot, pvel, for file: NARP.VEL 6.00000 362.000 798.000 12.0000 22.0000 1409.00 S wave - d2bot, svel, for file: NARS.VEL 6.00000 241.000 12.0000 212.000 22.0000 381.000 pssnrat d2bot p d2bot s d2bot thick pvel svel 6.000E+00 6.000E+<u>0</u>0 6.000E+00 6.000E+00 3.620E+02 2.410E+02 0.10 1.200E+01 1.200E+01 1.200E+01 6.000E+00 7.980E+02 2.120E+02 0.46 2.200E+01 2.200E+01 2.200E+01 1.000E+01 1.409E+03 3.810E+02 0.46 Table B-5. Poisson's ratio calculated from P- and S-wave velocity models for the Hoover School site.

P wave - d2bot, pvel, for file: HOOP2.VEL
7.50000 680.000
25.0000 1283.00

S wave - d2bot, svel, for file: HOOS2.VEL 7.50000 470.000 25.0000 790.000

d2bot_p	d2bot_s	d2bot	thick	pvel	svel	pssnrat
7.500E+00	7.500E+00	7.500E+00	7.500E+00	6.800E+02	4.700E+02	0.04
2.500E+01	2.500E+01	2.500E+01	1.750E+01	1.283E+03	7.900E+02	0.19

Table B-6. Poisson's ratio calculated from P- and S-wave velocity models for the Lincoln School site.

22.0000 675.000 29.7000 753.000 S wave - d2bot, svel, for file: LINS2.VEL 3.00000 256.000 22.0000 413.000 29.7000 470.000 d2bot p d2bot s d2bot thick pssnrat pvel svel 3.000E+00 3.000E+<u>0</u>0 3.000E+00 3.000E+00 3.680E+02 2.560E+02 0.03 2.200E+01 2.200E+01 2.200E+01 1.900E+01 6.750E+02 4.130E+02 0.20 2.970E+01 2.970E+01 2.970E+01 7.700E+00 7.530E+02 4.700E+02 0.18 Table B-7. Poisson's ratio calculated from P- and S-wave velocity models for the Lincoln School Whittier site.

1.50000 139.000 18.5000 347.000

d2bot_p	d2bot_s	d2bot	thick	pvel	svel	pssnrat
1.500E+00	1.500E+00	1.500E+00	1.500E+00	2.240E+02	1.390E+02	0.19
7.500E+00	1.850E+01	7.500E+00	6.000E+00	1.382E+03	3.470E+02	0.47
1.850E+01	1.850E+01	1.850E+01	1.100E+01	5.170E+02	3.470E+02	0.09

Table B-8. Poisson's ratio calculated from P- and S-wave velocity models for the Los Alisos Adult School site.

P wave - d 2.50000 12.5000 20.0000 27.5000	361.	000	EXCP.VEL			
	l2bot, svel,		EXCS.VEL			
2.50000	194.					
14.0000						
27.5000	262.	000				
d2bot_p	d2bot_s	d2bot	thick	pvel	svel	pssnrat
2.500E+00	2.500E+00	2.500E+00	2.500E+00	3.610E+02	1.940E+02	0.30
1.250E+01	1.400E+01	1.250E+01	1.000E+01	5.090E+02	2.420E+02	0.35
2.000E+01	1.400E+01	1.400E+01	1.500E+00	1.358E+03	2.420E+02	0.48
2.000E+01	2.750E+01	2.000E+01	6.000E+00	1.358E+03	2.620E+02	0.48
2.750E+01	2.750E+01	2.750E+01	7.500E+00	7.110E+02	2.620E+02	0.42

Table B-9. Poisson's ratio calculated from P- and S-wave velocity models for the Olive Junior High School site.

786.000 11.0000 16.8000 983.000 S wave - d2bot, svel, for file: OLVS.VEL 1.50000 209.000 11.0000 527.000 16.8000 636.000 d2bot p d2bot s d2bot thick pssnrat pvel svel $1.500E + \overline{00}$ 1.500E+00 1.500E+00 1.500E+00 3.090E+02 2.090E+02 0.08 1.100E+01 1.100E+01 1.100E+01 9.500E+00 7.860E+02 5.270E+02 0.09 1.680E+01 1.680E+01 1.680E+01 5.800E+00 9.830E+02 6.360E+02 0.14 Table B-10. Poisson's ratio calculated from P- and S-wave velocity models for the San Bernardino Fire Station site.

P	wave - d2bot, 8.50000 16.2000 70.0000 90.0000	pvel, for 430.000 936.000 1647.00 2094.00	file:	SB1P.VEL	
S	wave - d2bot, 3.70000 16.2000 41.2000 59.5000 78.0000 90.0000	svel, for 297.000 299.000 365.000 408.000 460.000 556.000	file:	SB1S.VEL	

9.000E+01 7.800E+01 7.800E+01 8.000E+00 2.094E+03 4.600E+02 0.4						4.300E+02 4.300E+02 9.360E+02 1.647E+03 1.647E+03 1.647E+03 2.094E+03		pssnrat 0.04 0.03 0.44 0.47 0.47 0.47 0.46 0.47 0.46
---	--	--	--	--	--	---	--	---

Table B-11. Poisson's ratio calculated from the P- and S-wave velocity model for the Santa Anita Golf Course site.

P wave - d2bot, pvel, for file: SAGP.VEL 7.50000 411.000 17.4000 609.000 25.0000 752.000 29.6000 1136.00 S wave - d2bot, svel, for file: SAGS_RE.VEL 284.000 7.50000 17.4000 343.000 25.0000 439.000 29.6000 553.000 d2bot_p d2bot thick d2bot s pvel svel pssnrat 7.500E+00 7.500E+00 7.500E+00 7.500E+00 4.110E+02 0.04 2.840E+02 1.740E+01 1.740E+01 0.27 1.740E+01 9.900E+00 6.090E+02 3.430E+02 2.500E+01 2.500E+01 2.500E+01 2.960E+01 2.960E+01 2.960E+01 7.600E+00 4.390E+02 7.520E+02 0.24 1.136E+03

4.600E+00

5.530E+02

0.34

Table B-12. Poisson's ratio calculated from P- and S-wave velocity models for the South Western Academy site.

P wave - d2bot,	pvel, for	file:	SWAP.VEL
4.00000	437.000		
15.0000	641.000		
29.5000	849.000		

d2bot_p	d2bot_s	d2bot	thick	pvel	svel	pssnrat
4.000E+00	4.000E+00	4.000E+00	4.000E+00	4.370E+02	2.330E+02	0.30
1.500E+01	1.500E+01	1.500E+01	1.100E+01	6.410E+02	3.290E+02	0.32
2.950E+01	2.950E+01	2.950E+01	1.450E+01	8.490E+02	5.270E+02	0.19

Table B-13. Poisson's ratio calculated from P- and S-wave velocity models for the St. Paul High School site.

pvel, for	file:	STPP.VEL
425.000		
585.000		
1994.00		
	425.000 585.000	585.000

S wave - d2bot, svel, for file: STPS.VEL 2.50000 227.000 20.0000 371.000 27.5000 490.000

d2bot_p	d2bot_s	d2bot	thick	pvel	svel	pssnrat
2.500E+00	2.500E+00	2.500E+00	2.500E+00	4.250E+02	2.270E+02	0.30
1.300E+01	2.000E+01	1.300E+01	1.050E+01	5.850E+02	3.710E+02	0.16
2.750E+01	2.000E+01	2.000E+01	7.000E+00	1.994E+03	3.710E+02	0.48
2.750E+01	2.750E+01	2.750E+01	7.500E+00	1.994E+03	4.900E+02	0.47