BOREHOLE P- AND S-WAVE VELOCITY AT THIRTEEN STATIONS IN SOUTHERN CALIFORNIA

U.S. Geological Survey Open-File Report OF 01-506

This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

[^0]
BOREHOLE P- AND S-WAVE VELOCITY AT THIRTEEN STATIONS IN SOUTHERN CALIFORNIA

by
James F. Gibbs ${ }^{1}$, David M. Boore ${ }^{1}$, John C. Tinsley ${ }^{1}$, and Charles S. Mueller ${ }^{2}$
U.S. Geological Survey Open-File Report OF 01-506

This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.
${ }^{1}$ Menlo Park, CA 94025
${ }^{2}$ Denver, CO 80225

TABLE OF CONTENTS

Page
Introduction 1
P - and S-Wave Travel-Time Data 4
Velocity Profiles 4
Summary Velocity Profiles 6
Acknowledgments 13
References 13
Appendix A-Detailed Results: Cerritos College Gymnasium 14
Cerritos College Physical Science Bldg. 21
Cerritos College Police Bldg. 28
Corps of Engineer Station 35
Hoover School 42
Lincoln School 49
Lincoln School Whittier 56
Los Alisos Adult School 63
Olive Junior High School 70
San Bernadino Fire Station 77
Santa Anita Golf Course 84
South Western Academy 91
St. Paul High School 98
Appendix B-Poisson's Ratios:
Cerritos College Gymnasium 105
Cerritos College Physical Science Bldg. 106
Cerritos College Police Bldg. 107
Corps of Engineer Station 108
Hoover School 109
Lincoln School 110
Lincoln School Whittier 111
Los Alisos Adult School 112
Olive Junior High School 113
San Bernadino Fire Station 114
Santa Anita Golf Course 115
South Western Academy 116
St. Paul High School 117

BOREHOLE P- AND S-WAVE VELOCITY AT THIRTEEN SITES IN SOUTHERN CALIFORNIA

by
James F. Gibbs, David M. Boore, John C. Tinsley, and Charles S. Mueller

INTRODUCTION

The U.S. Geological Survey (USGS), as part of a program to aquire seismic velocity data at locations of strong-ground motion in earthquakes (e.g. Gibbs, et al., 2000), has investigated thirteen additional sites in the Southern California region. Of the thirteen sites, twelve are in the vicinity of Whittier, California and one is located in San Bernardino, California.

Several deployments of temporary seismographs were made after the Whittier Narrows, California earthquake of 1 October 1987 (Mueller et al., 1988). A deployment, between 2 October and 9 November 1987, was the motivation for selection of six of the drill sites. Temporary portable seismographs at Hoover School (HOO), Lincoln School (LIN), Corps of Engineers Station (NAR), Olive Junior High School (OLV), Santa Anita Golf Course (SAG) and Southwestern Academy (SWA), recorded significant aftershock data. These portable sites with the exception of Santa Anita Golf Course were co-sited with strong-motion recorders.

Stations at HOO, Lincoln School Whittier (WLB), Saint Paul High School (STP), Alisos Adult School (EXC), Cerritos College Gymnasium (CGM), Cerritos College Physical Science Building (CPS), and Cerritos College Police Building (CPB) were part of an array of digital strong-motion stations deployed from "bedrock" in Whittier to near the deepest part of the Los Angeles basin in Norwalk. Although development and siting of this new array (patially installed at the time of this writing) was generally motivated by the Whittier Narrows earthquake, these new sites (with the exception of HOO) were not part of any Whittier Narrows aftershock deployments. A similar new digital strong-motion site was installed at the San Bernardino Fire Station during the same time frame.

Velocity data were obtained to depths of about 90 meters at two sites, 30 meters at seven sites, and 18 to 25 meters at four sites. Lithology data from the analysis of cuttings and samples, was obtained from the two $90-$ meter deep holes and from five of the shallower holes to supplement the velocity interpretation. The two 90 -meter boreholes (SB1, CPB) have been instrumented with borehole seismometers for continuous monitoring of earthquake activity (Rogers, et al., 1998). No drill samples or cuttings were obtained from the other six sites but driller's logs were scanned for major changes noted there. The velocity models at those sites were interpreted using only the measured data and major changes in the driller's log as noted above.

The sites are shown in Figure 1 and listed in Table 1, which gives references to information regarding the strong-motion data. Several hundred strong-motion records of the main-shock were written by this moderate size earthquake ($M_{L}=5.9$) making it important from a scientific and engineering prospective (Brady et al., 1988, Shakal et al., 1988).

Figure 1. Regional map showing the locations of boreholes (triangles) included in this report. Inset shows the locations of the Cerritos College boreholes at an expanded scale. Locations of roads and cities are approximate.

Table 1. Site names, three letter codes, and coordinates using the North American Datums of 1927 (NAD27) and 1983 (NAD83).

Station	StaCode	Lat:NAD27	Long:NAD27	Lat:NAD83	Long:NAD83
Cerritos College Gymnasium	CGM	33.88663	-118.09329	33.88664	-118.09419
Cerritos College Physical Sci. Bldg.	CPS	33.88589	-118.09698	33.88590	-118.09788
Cerritos College Police Bldg.	CPB	33.88212	-118.09680	33.88213	-118.09770
Corps of Engineers Station *	NAR	34.03219	-118.05225	34.03220	-118.05315
Hoover School *	HOO	33.98491	-118.02889	33.98492	-118.02979
Lincoln School *	LIN	34.09043	-118.09305	34.09044	-118.09395
Lincoln School Whittier	WLB	33.98535	-118.04061	33.98536	-118.04151
Los Alisos Adult School	EXC	33.89559	-118.08428	33.89560	-118.08518
Olive Junior High School *	OLV	34.10073	-117.97409	34.10074	-117.97499
San Bernardino Fire Station	SB1	34.10534	-117.28201	34.10535	-117.28289
Santa Anita Golf Course	SAG	34.13096	-118.03074	34.13097	-118.03164
South Western Academy *	SWA	34.11533	-118.13046	34.11534	-118.13136
St. Paul High School	STP	33.95158	-118.05369	33.95159	-118.05459

* Strong-motion accelerograph located near borehole (see location maps in Appendix A).

P - AND S-WAVE TRAVEL-TIME DATA

Shear waves were generated at the ground surface by an air-powered horizontal ram (Liu, et al., 1988) striking an anvil at either end of an aluminum channel 2.3 meters long. The ram was driven first in one direction and then in the other to generate pulses of opposite polarity. A switch attached to the shear source triggered the recorder and established the reference for the timing of arrivals. P-waves were generated by striking a steel plate with a sledge hammer. The recorder was triggered by a switch attached to the handle of the sledge hammer. P - and S-wave sources were offset from the borehole (same horizontal distance but different locations) to minimize the effect of waves traveling down the grout surrounding the casing. The source offsets varied from 2 to 4 meters depending on available space and depth of the borehole. Shallow holes (30 meters or less) were offset 2 or 3 meters.

Downhole measurements were made at 2.5-meter intervals at ten locations and at 2 -meter spacing at three of the shallower boreholes. The measurements were made by moving a three-component geophone to each depth and clamping it to the casing by an electrically-activated lever arm. A second three-component geophone was placed on the surface near the shear source used to verify timing of the triggered recorder. The data were recorded on diskettes using a 12-channel recording system.

VELOCITY PROFILES

The procedure for determining velocities is summarized in Figure 2. Because the orientation of the downhole geophone could not be controlled when moving from one depth to the next, the azimuth of the horizontal geophones relative to the source was unknown and changed with depth. To minimize the effects of those changes, the horizontal components were rotated to the direction that maximized the integral square amplitude within a time interval containing the shear wave (Boatwright et al., 1986). P - and S-wave first-arrival times were determined from the time series displayed at each depth on a 20 inch computer screen. The P-wave arrival-time was obtained from the vertical trace, and the S-wave arrival-times were obtained from the average of the rotated horizontal traces for ram strikes in opposite directions. The arrivals were timed to the nearest millisecond, probably a realistic precision for clear arrivals uncontaminated by noise.

A trial set of layer boundaries was chosen for the S-wave model, based on the lithologic descriptions and geophysical logs at the two sites (CBP, SB1) where geologic information was available. At five sites (CGM, CPS, EXC, STP, WLB) simplified lithology, determined from drill cuttings, was used to supplement the velocity determinations. At the remaining six sites (NAR, HOO, LIN, OLV, SAG, SWA) the velocity models were determined without the benefit of lithology or electric logs. The travel-time data were fit in a least-squares sense by a model made up of constant velocity layers, taking into account refraction across the interfaces between layers. The travel times were weighted by the inverse of an assigned normalized variance. A normalized standard deviation of 1 was assigned to the clear arrivals and values up to 5 were assigned to the others. The residuals were examined, and layer boundaries were added, if necessary, to reduce large residuals or to remove systematic trends in the residuals. The P-wave travel time data were analyzed initially with the set of layer boundaries finally determined for the S-wave data. Layer boundaries were then added if needed to fit the data and deleted if not needed. Commonly, an additional layer

Figure 2. Flow-chart outlining the data processing and steps in the interpretation.
boundary corresponding to the top of the zone of water saturation was needed to fit the P-wave data.

Some of the dynamic Poisson's ratios σ, calculated with initial velocity models, resulted in ratios that were out of the accepted range of values (0.0-0.5). To obtain a value in the acceptable range we made minor adjustments to the velocities using one or more of the following procedures: repicking shallow arrivals (usually P arrivals because small changes in P travel-times have greater effect on σ), adding a shallow layer, and/or adjusting layer thickness to ensure that Poisson's ratio was in the range 0.0-0.5. In most cases the small changes were made in the P-wave velocities at shallow depths (for more details see, Gibbs, et al., 1999). Overall, the changes in velocity required to produce acceptable values of σ were small and were only in a few layers.

For example, at San Bernardino Fire Station several velocity models were tried to get Poisson's ratio into the accepted range. We were forced to average the P-wave velocity over the top 8.5 meters to get the ratio from a negative value to a value of 0.04 . The preferred model in which the S-velocity follows the lithology (in general, the S-wave velocity is a better indicator of lithology than P-wave velocity) is included in Appendix A.

SUMMARY VELOCITY PROFILES

Figures $3-5$ show the S-wave velocity profiles determined from the borehole measurements at the thirteen sites. The velocity profiles are plotted at the same scale for ease of comparison. Figures $6-8$ show the P-wave velocity profiles for the same sites as Figures 3-5, respectively.

DESCRIPTION OF APPENDICES

Appendix A contains for each site: a location map, S - and P-wave time-series records, a time-depth plot, and tables giving arrival times and velocity values. The upper and lower bounds on the velocity plots show approximate 68 percent confidence limits. The bounds are not symmetrical because they are based on the inverse velocities in the layers. Appendix B contains tables of P - and S-wave velocity models and the Poisson's ratios obtained from those models.

Figure 3. S-wave velocity models shown on the same figure for comparison.

Figure 4. S-wave velocity models shown on the same figure for comparison.

Figure 5. S-wave velocity models shown on same figure for comparison.

Figure 6. P-wave velocity models shown on the same figure for comparison.

Figure 7. P-wave velocity models shown on the same figure for comparison.

Figure 8. P-wave velocity models shown on the same figure for comparison.

ACKNOWLEDGMENTS

We could not have completed these studies without the assistance of many individuals who helped us to gain access to the sites, assisted with utilities clearances and granted permission to conduct the studies. These people include Michael Sebak at Cerritos College; Warren Thomas at Corps of Engineers Station; Margie Leon and Ray Rodriguez at Hoover School; Jack Feldman at Lincoln School; Stephen Finkle at Lincoln School Whittier; Mr. Hengler at Los Alisos Adult School; Daniel at Olive Junior High School; Richard McGreevy at San Bernardino Fire Station; Dave Cuellar, Terry Moeller, and Tom Dittmar at Santa Anita Golf Course; Charles Craig at South Western Academy; Father Robert Gallagher at St. Paul High School. We also thank Allen Foss of the U.S. Geological Survey for his help with the P - and S-wave logging.

REFERENCES

Boatwright, John, Porcella, R., Fumal, T., Liu, Hsi-Ping, (1986), Direct estimates of shear wave amplification from a borehole near Coalinga, California: Earthquake Notes, v. 57, p. 8.

Brady, A. G., Etheredge, E. C., and Porcella, R. L. (1988), The Whittier Narrows, California Earthquake of October 1, 1987, Prelininary assessment of strong ground motion records: Earthquake Spectra, v.4, no.1, p. 55-74.
Gibbs, James F., Tinsley, John C., Boore, David M., and Joyner, William B., 1999, Seismic velocities and geological conditions at twelve sites subjected to strong ground motion in the 1994 Northridge, California, earthquake: a revision of OFR 96-740, U.S. Geological Survey, Open-File Report 99-446, 142p.
Gibbs, James F., Tinsley, John C., Boore, David M., and Joyner, William B., 2000, Borehole velocity measuremnets and geological conditions at thirteen sites in the Los Angeles, California region: U.S. Geological Survey, Open-File Report OF 00470, 118p.

Liu, Hsi-Ping, Warrick, Richard E., Westerlund, Robert E., Fletcher, Jon B. and Maxwell, Gary L., 1988, An air-powered impulsive shear-wave source with repeatable signals: Bull. Seism. Soc. Am. v. 78, p. 355-369.
Mueller, C., Dietel, C., Glassmoyer, G., Noce, T., Sembera, E., Spudich, P., and Watson, J., Digital Recordings of Aftershocks of the 1 October 1987 Whittier Narrows, California, Earthquake: U.S. Geological Survey, Open-File Report 88-688, 40p.
Rogers, A., Mueller, C., Tinsley, J., and Koesterer, C., (1998), Instrumentation and geotechnical characteristics at two vertical strong motion arrays at Cerritos College, Norwalk, and downtown San Bernardino, California: U.S. Geological Survey, OpenFile Report 98-346, 58p.

Shakal, A., Huang, M. J., and Cao, T. Q. (1988), The Whittier Narrows, California Earthquake of October 1, 1987, CSMIP strong motion data: Earthquake spectra, v.4, no.1, p. 75-100.

APPENDIX—A
Detailed Results

Figure A-1. Site location map for the borehole at Cerritos College Gymnasium.

Figure A-2. Horizontal component record section (from impacts in opposite directions) superimposed for identification of S -wave onset. Approximate S -wave time picks are indicated by the hatch marks.

Figure A-3. Vertical component record section. Approximate P-wave arrivals are indicated by the dots.

Figure A-4. Time-depth graph of P-wave and S-wave picks. Line segments are straightline interpolations of model predictions at the observation depths. The times for zero depth, not shown, are given by hoffset divided by the velocity in the uppermost layer (see accompanying tables of velocities for specific values).

ABLE A-1. S-wave arrival times and velocity summaries

TABLE A-2. p-wave arrival times and velocity summaries.

Figure A-6. Site location map for the borehole at Cerritos College Physical Science Building.

Figure A-7. Horizontal component record section (from impacts in opposite directions) superimposed for identification of S -wave onset. Approximate S -wave time picks are indicated by the hatch marks.

Figure A-8. Vertical component record section. Approximate P-wave arrivals are indicated by the dots.

Figure A-9. Time-depth graph of P-wave and S-wave picks. Line segments are straightline interpolations of model predictions at the observation depths. The times for zero depth, not shown, are given by hoffset divided by the velocity in the uppermost layer (see accompanying tables of velocities for specific values).

Figure A-10. S- and P-wave velocity profiles with generalized geologic log. Dashed
lines represent plus and minus one standard deviation.
ABLE A-3. S-wave arrival times and velocity summaries.

ABLE A-4. p-wave arrival times and velocity sumaries.

Figure A-11. Site location map for the borehole at Cerritos College Police Building.

Cerritos College Police Station

Figure A-12. Horizontal component record section (from impacts in opposite directions) superimposed for identification of S -wave onset. Approximate S -wave time picks are indicated by the hatch marks.

Cerritos College Police Station

Figure A-13. Vertical component record section. Approximate P-wave arrivals are indicated by the dots.

Figure A-14. Time-depth graph of P-wave and S-wave picks. Line segments are straightline interpolations of model predictions at the observation depths. The times for zero depth, not shown, are given by hoffset divided by the velocity in the uppermost layer (see accompanying tables of velocities for specific values).

ABLE A-5. S-wave arrival times and velocity sumaries.
Location: Cerritos Police Building: $\$ \quad$ Coordinates:
hoffset $=4.00 \quad$ travel-time file: $\mathrm{F}: \backslash \mathrm{CPB} \backslash \mathrm{CPBS} . \mathrm{TT}$

[^1]

Figure A-16. Site location map for the borehole at Corps of Engineers Station. The accelerograph is located approximately 45 meters from the borehole.

Figure A-17. Horizontal component record section (from impacts in opposite directions) superimposed for identification of S-wave onset. Approximate S -wave time picks are indicated by the hatch marks.

Figure A-18. Vertical component record section. Approximate P-wave arrivals are indicated by the dots.

Figure A-19. Time-depth graph of P-wave and S-wave picks. Line segments are straightline interpolations of model predictions at the observation depths. The times for zero depth, not shown, are given by hoffset divided by the velocity in the uppermost layer (see accompanying tables of velocities for specific values).

ABLE A-7. S-wave arrival times and velocity sumaries.

ABLE A-8. p-wave arrival times and velocity summaries.

Figure A-21. Site location map for the borehole at Hoover School. The accelerograph is located approximately 30 meters from the borehole.

Figure A-22. Horizontal component record section (from impacts in opposite directions) superimposed for identification of S-wave onset. Approximate S-wave time picks are indicated by the hatch marks.

Figure A-23. Vertical component record section. Approximate P-wave arrivals are indicated by the dots.

Figure A-24. Time-depth graph of P-wave and S-wave picks. Line segments are straightline interpolations of model predictions at the observation depths. The times for zero depth, not shown, are given by hoffset divided by the velocity in the uppermost layer (see accompanying tables of velocities for specific values).

ABLE A-9. S-wave arrival times and velocity sumaries.

ABLE A-10. p-wave arrival times and velocity summaries.

Figure A-26. Site location map for the borehole at Lincoln School. The accelerograph is located approximately 91 meters from the borehole.

Figure A-27. Horizontal component record section (from impacts in opposite directions) superimposed for identification of S-wave onset. Approximate S-wave time picks are indicated by the hatch marks.

Oct 23, 2001
F:VIINILINPWAVE.DT
F:VLINILINV1.GRA

Figure A-28. Vertical component record section. Approximate P-wave arrivals are indicated by the dots.

Figure A-29. Time-depth graph of P-wave and S-wave picks. Line segments are straightline interpolations of model predictions at the observation depths. The times for zero depth, not shown, are given by hoffset divided by the velocity in the uppermost layer (see accompanying tables of velocities for specific values).

ABLE A-11. S-wave arrival times and velocity summaries.

ABLE A-12. p-wave arrival times and velocity summaries.

Figure A-31. Site location map for the borehole at Lincoln School Whittier.

Figure A-32. Horizontal component record section (from impacts in opposite directions) superimposed for identification of S-wave onset. Approximate S -wave time picks are indicated by the hatch marks.

Oct 24, 2001 9:12:31 am F:IWLBIWLBV.DT F:IWLBIWLBV1.GRA

Figure A-33. Vertical component record section. Approximate P-wave arrivals are indicated by the dots.

Figure A-34. Time-depth graph of P-wave and S-wave picks. Line segments are straightline interpolations of model predictions at the observation depths. The times for zero depth, not shown, are given by hoffset divided by the velocity in the uppermost layer (see accompanying tables of velocities for specific values).

$\mathrm{dtb}(\mathrm{ft})$	$\mathrm{thl}(\mathrm{ft})$	$\mathrm{v}(\mathrm{ft} / \mathrm{s})$	$\mathrm{vl}(\mathrm{ft} / \mathrm{s})$	$\mathrm{vu}(\mathrm{ft} / \mathrm{s})$
4.9	4.9	455	444	466
60.7	55.8	1140	1130	1150

N
Location: Lincoln School - Whittier: S Coordinates:
travel-time file: $\mathrm{F}: \backslash \mathrm{WLB} \backslash \mathrm{WLBS} . \mathrm{TT}$ nlayers =

ABLB A-14. S-wave arrival times and velocity sumaries.

Explanation:	
d(II)	= depth in meters
d(ft)	$=$ depth in feet
tsl(s)	= observed arrival time in seconds (from source to receiver, along a slant path). For the arrival times used in the S-wave model, the times are the average of picks from traces obtained from hamer blows differing in direction by 180 degrees.
turt (s)	vertical travel time computed from the
$\operatorname{vavg}(\mathrm{m} / \mathrm{s})=$ average velocity from the surface to	
	= sigma, standard deviation normalized to the standard deviation of best picks
rsdl(sec) $=$ residual (observed - fitted travel time), in sec	
the (Im)	= thickness of layer in meters
v (1i/s)	$=$ velocity of layer in meters per second
vl (in/s)	$=$ lower limit of velocity in meters per second (see text for explanation of velocity limits)
$\mathrm{vu}(\mathrm{in} / \mathrm{s})$	$=$ upper limit of velocity in meters per second
dtb (ft)	$=$ depth to bottom of layer in feet
thl (ft)	= thickness of layer in feet
$\mathrm{v}(\mathrm{ft} / \mathrm{s})$	= velocity of layer in feet per second
v 1 (ft / s)	$=$ lower limit of velocity in feet per second
$\mathrm{vu}(\mathrm{ft} / \mathrm{s})$	$=$ upper limit of velocity in feet per second

33.98535	-118.04060	Hole_Code:	301	
nlayers $=$				
dtb (m)	thk (m)	$\mathrm{V}(\mathrm{m} / \mathrm{s})$	$\mathrm{vl}(\mathrm{m} / \mathrm{s})$	$\mathrm{vu}(\mathrm{m} / \mathrm{s})$
1.5	1.5	224	212	238
7.5	6.0	1382	1217	1599
18.5	11.0	517	501	533

Figure A-36. Site location map for the borehole at Los Alisos Adult School.

Figure A-37. Horizontal component record section (from impacts in opposite directions) superimposed for identification of S -wave onset. Approximate S -wave time picks are indicated by the hatch marks.

Figure A-38. Vertical component record section. Approximate P-wave arrivals are indicated by the dots.

Figure A-39. Time-depth graph of P-wave and S-wave picks. Line segments are straightline interpolations of model predictions at the observation depths. The times for zero depth, not shown, are given by hoffset divided by the velocity in the uppermost layer (see accompanying tables of velocities for specific values).

ABLB A－15．S－wave arrival times and velocity sumaries．

∞

淢
管
～

$$
\begin{array}{ll}
\begin{array}{ll}
\text { Explanation: } & \\
\begin{aligned}
\text { d(m) } & =\text { depth in meters } \\
d(\mathrm{ft}) & =\text { depth in feet } \\
\mathrm{tsl}(\mathrm{~s}) & = \\
& \text { observed arrival }
\end{aligned}
\end{array} \text { to racoivor }
\end{array}
$$

 $\begin{aligned} \operatorname{tvrt}(s)= & \text { vertical travel time computed from the model } \\ \text { vavg }(\mathrm{m} / \mathrm{s})= & \text { average velocity from the surface to each depth，} \\ & \text { computed as avg＿vel }=\mathrm{d}(\mathrm{m}) / \text {／vrt }(\mathrm{s}) \\ \text { sig }= & \text { signa，standard deviation normalized to the } \\ & \text { standard deviation of best picks }\end{aligned}$ rsdl（sec）$=$ residual（observed－fitted travel time），in secs $\mathrm{dtb}(\mathrm{m})=$ depth to bottom of layer in meters $\begin{aligned} & \mathrm{V}(\mathrm{m} / \mathrm{s})=v e l o c i t y \\ & \mathrm{v}(\mathrm{mi} / \mathrm{s})=\text { lower layer in meters per second } \\ & \text { locond }\end{aligned}$ $\mathrm{vu}(\mathrm{m} / \mathrm{s})=$（see text for explanation of velocity limits） $\mathrm{vu}(\mathrm{m} / \mathrm{s})=$ depth to bottom of layer in fe $\mathrm{th} \%(\mathrm{ft})=$ thickness of layer in feet
$\mathrm{v}(\mathrm{ft} / \mathrm{s})=$ velocity of layer in feet per

[^2]| $6000 \cdot 0$ | T | 952 | $6 \mathrm{TtT}{ }^{\circ}$ | zert＇0 | $2 \cdot 06$ | $9 . L 2$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0700\％ 0 | T | ゅゅて | ¢20t 0 | LTOT．0 | $0 \cdot 78$ | 0.92 |
| 8000% | T | 2 t 2 | $6260{ }^{\circ}$ | 9860° | 8 8. | $9 \cdot z 2$ |
| 2000\％－ | T | 0ヶ2 | E $880{ }^{\circ}$ | 0880.0 | 9．99 | 0.02 |
| 0000% | T | ᄂ¢z | $88 L 0^{\circ} 0$ | ED 20.0 | ¢ 6 | $9 . L T$ |
| 0000\％ 0 | T | ¢ $¢ 2$ | 2790.0 | 8590.0 | $2 \cdot 66$ | $0 \cdot \mathrm{gT}$ |
| 9000% | T | โ $\varepsilon 2$ | $2 ヶ 50.0$ | ¢¢50．0 | 0．tヵ | $9 \cdot \mathrm{~T}$ |
| T000\％ | T | 822 | $6850{ }^{\circ}$ | $6 \pm 50 \cdot 0$ | 8.28 | 0.01 |
| 8000% | T | ¢ 22 | $9880{ }^{\circ}$ | ¢¢ 80.0 | 9．52 | 9.4 |
| 8000% | T | stz | $2820{ }^{\circ}$ | \＆sz0．0 | ¢．9t | $0 \cdot 9$ |
| 2000 － | T | D6T | $6270{ }^{\circ}$ | ع9t0 0 | 2＇8 | 9.2 |
| （0as）Tpsx | 6¢5 | $(5 / \pi)$ ESAEA | （s） $7 x$ | （s） T | 17 | （T） |

Figure A-41. Site location map for the borehole at Olive Junior High School. The accelerograph is located approximately 46 meters from the borehole.

Figure A-42. Horizontal component record section (from impacts in opposite directions) superimposed for identification of S-wave onset. Approximate S-wave time picks are indicated by the hatch marks.

Figure A-43. Vertical component record section. Approximate P-wave arrivals are indicated by the dots.

Figure A-44. Time-depth graph of P-wave and S-wave picks. Line segments are straightline interpolations of model predictions at the observation depths. The times for zero depth, not shown, are given by hoffset divided by the velocity in the uppermost layer (see accompanying tables of velocities for specific values).

ABLE A-17. S-wave arrival times and velocity summaries.

ABLE A-18. p-wave arrival times and velocity summaries.

Figure A-46. Site location map for the borehole at San Bernardino Main Fire Station.

San Bernardino Main Fire Station

Figure A-47. Horizontal component record section (from impacts in opposite directions) superimposed for identification of S-wave onset. Approximate S-wave time picks are indicated by the hatch marks.

Oct 24, 2001
F:ISB1ISB1VERT.DT F:ISB11SB1V45.GRA

San Bernardino Main Fire Station

Oct 24, 2001
F:ISB1ISB1V.DT
F:ISB1ISB1V4.GR

Figure A-48. Vertical component record section. Approximate P-wave arrivals are indicated by the dots.

- d_obs

Figure A-49. Time-depth graph of P-wave and S-wave picks. Line segments are straightline interpolations of model predictions at the observation depths. The times for zero depth, not shown, are given by hoffset divided by the velocity in the uppermost layer (see accompanying tables of velocities for specific values).

$$
\text { lavers }=6
$$

	相にぃOmにo

[^3]ABLE A-20. p-wave arrival times and velocity summaries.
Location: San Bernardino Fire Station: P Coordinates:
hoffset $=4.00$ travel-time file: $F: \backslash$ SBl \backslash SBlP. TT

[^4]

Figure A-51. Site location map for the borehole at Santa Anita Golf Course.

Figure A-52. Horizontal component record section (from impacts in opposite directions) superimposed for identification of S-wave onset. Approximate S -wave time picks are indicated by the hatch marks.

Figure A-53. Vertical component record section. Approximate P-wave arrivals are indicated by the dots.

Figure A-54. Time-depth graph of P-wave and S-wave picks. Line segments are straightline interpolations of model predictions at the observation depths. The times for zero depth, not shown, are given by hoffset divided by the velocity in the uppermost layer (see accompanying tables of velocities for specific values).

ABLE A22. p-wave arrival times and velocity summaries.

Figure A-56. Site location map for the borehole at South Western Academy. The accelerograph is located approximately 10 meters from the borehole.

Figure A-57. Horizontal component record section (from impacts in opposite directions) superimposed for identification of S-wave onset. Approximate S-wave time picks are indicated by the hatch marks.

Figure A-58. Vertical component record section. Approximate P-wave arrivals are indicated by the dots.

Figure A-59. Time-depth graph of P-wave and S-wave picks. Line segments are straightline interpolations of model predictions at the observation depths. The times for zero depth, not shown, are given by hoffset divided by the velocity in the uppermost layer (see accompanying tables of velocities for specific values).

d(In)	d (ft)	tsi(s)	tvrt (s)	vavg (il/s)	sig	rsdl (sec)	dtb (im)	thk (II)	$\mathrm{v}(\mathbb{4} / \mathrm{s})$	$\mathrm{vl}(\mathrm{m} / \mathrm{s})$	vu(in/s)	dtb (ft)	thl (ft) v	v (ft/s)	vl (ft/s)	$\mathrm{vu}(\mathrm{ft} / \mathrm{s})$
2.5	8.2	0.0094	0.0057	437	1	0.0005	4.0	4.0	437	423	451	13.1	13.1	1432	1388	1479
5.0	16.4	0.0126	0.0107	467	1	0.0002	15.0	11.0	641	623	660	49.2	36.1	2102	2042	2165
7.5	24.6	0.0154	0.0146	513	1	-0.0003	29.5	14.5	849	823	876	96.8	47.6	2785	2701	2874
10.0	32.8	0.0184	0.0185	540	1	-0.0009										
12.5	41.0	0.0236	0.0224	558	2	0.0006										
15.0	49.2	0.0264	0.0263	570	2	-0.0004										
17.5	57.4	0.0304	0.0293	598	1	0.0007										
20.0	65.6	0.0326	0.0322	621	1	0.0000	Explanation:									
22.5	73.8	0.0354	0.0351	640	1	-0.0001			d(il)	= depth in meters						
25.0	82.0	0.0384	0.0381	656	1	0.0000			d(ft)	$=$ depth in feet						
27.5	90.2	0.0414	0.0410	670	1	0.0001			tsl(s)	= observed arrival time in seconds (from source						
29.5	96.8	0.0434	0.0434	680	1	-0.0002				to receiver, along a slant path). For the arrival times used in the S-wave model, the times are the average of picks froll traces obtained from hammer blows differing in direction by 180 degrees.						
									turt (s)	= vertical travel time computed froil the model						
									vavgin	average velocity from the surface to each depth, computed as avg_vel $=d(\mathbb{m}) /$ tvit (s)						
									sig	$=$ sigma, standard deviation normalized to the standard deviation of best picks						
									$\begin{aligned} & \text { rsdl (s } \\ & \text { dtb } \text { (II) } \end{aligned}$	$=$ residual (observed - fitted travel time), in secs $=$ depth to bottoil of layer in meters						
									thk (im)	$=$ thickness of layer in meters$=$ velocity of layer in meters						
									$\mathrm{v}(\mathbb{1} / \mathrm{s})$							
									$\mathrm{vl}(\mathrm{m} / \mathrm{s}$)	$=$ lower limit of velocity in meters per second (see text for explanation of velocity limits)						
									vu(in/s	= upper limit of velocity in meters per second						
									dtb (ft)	$=$ depth to bottom of layer in feet$=$ thickness of layer in feet						
									thk (ft							
									v (ft/s)	= velocity of layer in feet per second						
									$\mathrm{v}^{1}(\mathrm{ft} / \mathrm{ft}$	$=$ lower limit of velocity in feet per second$=$ upper limit of velocity in feet per second						
									$\mathrm{vu}(\mathrm{ft} / \mathrm{s})=$ upper limit of velocity in feet per second							

Figure A-61. Site location map for the borehole at St. Paul High School.

Figure A-62. Horizontal component record section (from impacts in opposite directions) superimposed for identification of S-wave onset. Approximate S -wave time picks are indicated by the hatch marks.

Figure A-63. Vertical component record section. Approximate P-wave arrivals are indicated by the dots.

Figure A-64. Time-depth graph of P-wave and S-wave picks. Line segments are straightline interpolations of model predictions at the observation depths. The times for zero depth, not shown, are given by hoffset divided by the velocity in the uppermost layer (see accompanying tables of velocities for specific values).

ABLB A-25. S-wave arrival times and velocity sumaries.

ABLB A-26. P-wave arrival times and velocity sumaries.

APPENDIX-B

Poisson's Ratios

Table B-1. Poisson's ratio calculated from $P-$ and s-wave velocity models fo: the Cerritos College Gymnasium site.

$\begin{aligned} & \text { P wave - } \\ & 6.00000 \\ & 10.0000 \\ & 29.4000 \end{aligned}$	$\begin{array}{r} \text { 2bot, pvel, } \\ 437 \\ 348 \\ 156 \end{array}$	for file: 000 000 .00	CGMP.VEL			
s wave - d2bot, svel, for file: CGMs.vEL						
2.50000	255.	000				
5.00000	288.	000				
12.5000	217.	000				
25.0000	249.	000				
29.4000	329.	000				
d2bot_p	d2bot_s	d2bot	thick	pvel	svel	pssnrat
$6.000 \mathrm{E}+\overline{0} 0$	$2.500 \mathrm{E}+\overline{0} 0$	$2.500 \mathrm{E}+00$	$2.500 \mathrm{E}+00$	$4.370 \mathrm{E}+02$	$2.550 \mathrm{E}+02$	0.24
$6.000 \mathrm{E}+00$	$5.000 \mathrm{E}+00$	$5.000 \mathrm{E}+00$	$2.500 \mathrm{E}+00$	$4.370 \mathrm{E}+02$	$2.880 \mathrm{E}+02$	0.12
$6.000 \mathrm{E}+00$	$1.250 \mathrm{E}+01$	$6.000 \mathrm{E}+00$	$1.000 \mathrm{E}+00$	$4.370 \mathrm{E}+02$	2.170E+02	0.34
1.000E+01	$1.250 \mathrm{E}+01$	$1.000 \mathrm{E}+01$	$4.000 \mathrm{E}+00$	$3.480 \mathrm{E}+02$	2.170E+02	0.18
$2.940 \mathrm{E}+01$	$1.250 \mathrm{E}+01$	$1.250 \mathrm{E}+01$	$2.500 \mathrm{E}+00$	1. $563 \mathrm{E}+03$	2.170E+02	0.49
2.940E+01	2.500E+01	$2.500 \mathrm{E}+01$	$1.250 \mathrm{E}+01$	1. $563 \mathrm{E}+03$	2.490E+02	0.49
$2.940 \mathrm{E}+01$	2.940E+01	$2.940 \mathrm{E}+01$	$4.400 \mathrm{E}+00$	$1.563 \mathrm{E}+03$	$3.290 \mathrm{E}+02$	0.48

Table $B-2$. Poisson's ratio calculated from P - and S-wave velocity models for the Cerritos College Physical sciences Building site.

```
P wave - d2bot, pvel, for file: CPSP.VEL
    2.50000 353.000
    15.0000 517.000
    29.0000 1172.00
S wave - d2bot, svel, for file: CPSS.VEL
    2.50000 185.000
    15.0000 218.000
    29.0000 253.000
    d2bot_p d2bot_s d2bot thick pvel svel pssnrat
2.500E+00 2.500E+00 2.500E+00 2.500E+00 3.530E+02 1.850E+02 0.31
1.500E+01 1.500E+01 1.500E+01 1.250E+01 5.170E+02 2.180E+02 
2.900E+01 2.900E+01 2.900E+01 1.400E+01 1.172E+03 2.530E+02 
```

Table $B-3$. Poisson's ratio calculated from P - and S-wave velocity models for the Cerritos College Police Building site.

```
P wave - d2bot, pvel, for file: CPBP.VEL
    9.00000 359.000
    12.5000 734.000
    89.8000 1739.00
S wave - d2bot, svel, for file: CPBS.VEL
    3.00000 229.000
    9.00000 204.000
    23.0000 259.000
    32.0000 295.000
    46.0000 348.000
    78.0000 418.000
    89.8000 450.000
    d2bot p d2bots d2bot thick pvel svel pssnrat
9.000E+\overline{0}0}3.000\textrm{E}+\overline{0}0\quad3.000\textrm{E}+00\quad3.000\textrm{E}+0
9.000E+00 9.000E+00 9.000E+00
1.250E+01 2.300E+01 1.250E+01
8.980E+01 2.300E+01 2.300E+01
8.980E+01 3.200E+01
8.980E+01
    4.600E+01
    3.200E+01
    4.600E+01
    7.800E+01
    6.000E+00
    3.500E+00
    1.050E+01
    2.290E+02
    0.16
```

d2bot p
$9.000 \mathrm{E}+00$
$9.000 \mathrm{E}+00$
$1.250 \mathrm{E}+01$
8. $980 \mathrm{E}+01$
$8.980 \mathrm{E}+01$
8. $980 \mathrm{E}+01$
$8.980 \mathrm{E}+01$
d2bot s
$3.000 \mathrm{E}+\overline{0} 0$
3.000E+00
$9.000 \mathrm{E}+00$

1. $250 \mathrm{E}+01$
$2.300 \mathrm{E}+01$
$3.200 \mathrm{E}+01$
2. $600 \mathrm{E}+01$
$7.800 \mathrm{E}+01$
3. $980 \mathrm{E}+01$
$9.000 \mathrm{E}+00$
4. $400 \mathrm{E}+01$
$3.200 \mathrm{E}+01$
5. $180 \mathrm{E}+01$
pvel
$3.590 \mathrm{E}+02$
$3.590 \mathrm{E}+02$
$7.340 \mathrm{E}+02$
$1.739 \mathrm{E}+03 \quad 2.590 \mathrm{E}+02$
$1.739 \mathrm{E}+03 \quad 2.950 \mathrm{E}+02$
$1.739 \mathrm{E}+03 \quad 3.480 \mathrm{E}+02$
$1.739 \mathrm{E}+03 \quad 4.180 \mathrm{E}+02$
6. $739 \mathrm{E}+03 \quad 4.500 \mathrm{E}+02$

-

pssnrat
0.16
0.26
0.43
0.49
0.49
0.48
0.47
0.46

Table $B-4$. Poisson's ratio calculated from the $P-$ and s-wave velocity models for the Corps of Engineer's site.


```
Table B-5. Poisson's ratio calculated from P- and S-wave velocity models
                for the Hoover school site.
P wave - d2bot, pvel, for file: HOOP2.VEL
    7.50000 680.000
    25.0000 1283.00
s wave - d2bot, svel, for file: HOOS2.VEL
    7.50000 470.000
    25.0000 790.000
    d2bot_p d2bot_s d2bot thick pvel svel pssnrat
7.500E+\overline{0}0
2.500E+01 2.500E+01 2.500E+01 1.750E+01 1.283E+03 7.900E+02 
```

```
Table B-6. Poisson's ratio calculated from P- and S-wave velocity models
    for the Lincoln school site.
P wave - d2bot, pvel, for file: LINP.VEL
    3.00000 368.000
    22.0000 675.000
    29.7000 753.000
s wave - d2bot, svel, for file: LINs2.VEL
    3.00000 256.000
    22.0000 413.000
    29.7000 470.000
    d2bot_p d2bot_s d2bot thick pvel svel pssnrat
```



```
2.200E+01 2.200E+01 2.200E+01 1.900E+01 1.7.750E+02 
2.970E+01 2.970E+01 2.970E+01 7.700E+00 7.530E+02 4.700E+02 
```

```
Table B-7. Poisson's ratio calculated from P- and S-wave velocity models
for the Lincoln School whittier site.
P wave - d2bot, pvel, for file: mLBVERT.VEL
    1.50000 224.000
    7.50000 1382.00
    18.5000 517.000
S wave - d2bot, svel, for file: 而LBS.VEL
    1.50000 139.000
    18.5000 347.000
    d2bot p d2bot s d2bot thick
1.500E+\overline{0}
7.500E+00
    1.500E+00
    1.500E+00
    1.500E+00
    1.850E+01
        7.500E+00
        6.000E+00
        2.240E+02
        1.382E+03
        1.390E+02
        pssnrat
        0.19
\(7.500 \mathrm{E}+00\)
\(6.000 \mathrm{E}+00\)
1. 382E+03
3. \(470 \mathrm{E}+02\)
0.47
1. \(850 \mathrm{E}+01\)
1. \(850 \mathrm{E}+01\)
1. \(850 \mathrm{E}+01\)
1. \(100 \mathrm{E}+01\)
5. 170E+02
3. \(470 \mathrm{E}+02\)
0.09
```

Table $B-8$. Poisson ${ }^{\top}$ s ratio calculated from P - and S-wave velocity models for the Los Alisos Adult School site.

P wave - d2bot, pvel, for file: EXCP. VEL
$2.50000 \quad 361.000$
$12.5000 \quad 509.000$
$20.0000 \quad 1358.00$
$27.5000 \quad 711.000$
s wave - d2bot, svel, for file: EXCS.VEL
$2.50000 \quad 194.000$
$14.0000 \quad 242.000$
$27.5000 \quad 262.000$
d2bot_p d2bot_s d2bot thick pvel svel pssnrat
$2.500 \mathrm{E}+\overline{0} 02.500 \mathrm{E}+\overline{0} 0$
$2.500 \mathrm{E}+002.500 \mathrm{E}+00$
1.250E+01
2. 000E+01

1. $400 \mathrm{E}+01$
$1.250 \mathrm{E}+01 \quad 1.000 \mathrm{E}+01$
$3.610 \mathrm{E}+02$
2. $940 \mathrm{E}+02$
3. $000 \mathrm{E}+01$
4. $400 \mathrm{E}+01$
5. $400 \mathrm{E}+01$
6. $500 \mathrm{E}+00$
$5.090 \mathrm{E}+02 \quad 2.420 \mathrm{E}+02$
0.35
$1.358 \mathrm{E}+03 \quad 2.420 \mathrm{E}+02$
0.48
$2.750 \mathrm{E}+01$
7. $750 \mathrm{E}+01$
8. 000E+01
$6.000 \mathrm{E}+00$
9. $358 \mathrm{E}+03 \quad 2.620 \mathrm{E}+02$
0.48
$2.750 \mathrm{E}+01 \quad 7.500 \mathrm{E}+00$
10. 110E+02 2. $620 \mathrm{E}+02$
11. 42
```
Table B-9. Poisson's ratio calculated from P- and S-wave velocity models
for the Olive Junior High School site.
P wave - d2bot, pvel, for file: OLVP.VEL
    1.50000 309.000
    11.0000 786.000
    16.8000 983.000
s wave - d2bot, svel, for file: OLVS.VEL
    1.50000 209.000
    11.0000 527.000
    16.8000 636.000
    d2bot_p d2bot_s d2bot thick pvel svel pssnrat
    1.500E+00 1.500E+00
1. 100E+01
    1. 100E+01
        1.500E+00 1.500E+00
        3.090E+02
```

2.090E+02
$5.270 \mathrm{E}+02$
0.08
0.09

1. $100 \mathrm{E}+01$
2. 100E+01
3. $100 \mathrm{E}+01$
9.500E+00
$7.860 \mathrm{E}+02$
4. $360 \mathrm{E}+02$
0.14

Table $B-10$. Poisson's ratio calculated from P - and s-wave velocity models for the San Bernardino Fire Station site.

Table B-11. Poisson's ratio calculated from the P- and s-wave velocity model
for the Santa Anita Golf Course site.

Table $B-12$. Poisson's ratio calculated from P - and S-wave velocity models for the South Western Academy site.
P wave - d2bot, pvel, for file: SWAP.VEL
$4.00000 \quad 437.000$
15.0000641 .000
29.5000849 .000

S wave - d2bot, svel, for file: STiss_RE.VEL $4.00000 \quad 233.000$
$15.0000 \quad 329.000$
$29.5000 \quad 527.000$
d2bot_p d2bot_s d2bot thick pvel svel pssnrat
4. $000 \mathrm{E}+\overline{0} \mathrm{O}$
4.000E $+\overline{0} 0$
4.000E+00 4.000E+00
4. 370E+02
$2.330 \mathrm{E}+02$
0.30

1. 500E+01
2. $500 \mathrm{E}+01$
3. $500 \mathrm{E}+01$ 1. $100 \mathrm{E}+01$
4. $410 \mathrm{E}+02$
$3.290 \mathrm{E}+02$
0.32
$2.950 \mathrm{E}+01$
5. $950 \mathrm{E}+01$
$2.950 \mathrm{E}+01 \quad 1.450 \mathrm{E}+01$
6. $490 \mathrm{E}+02$
$5.270 \mathrm{E}+02$
0.19
```
Table B-13. Poisson`s ratio calculated from P- and S-wave velocity models
                for the St. Paul High School site.
P wave - d2bot, pvel, for file: STPP.VEL
    2.50000 425.000
    13.0000 585.000
    27.5000 1994.00
S wave - d2bot, svel, for file: STPS.VEL
    2.50000 227.000
    20.0000 371.000
    27.5000 490.000
    d2bot p d2bots d2bot thick pvel svel pssnrat
2.500E+\overline{0}0 2.500E+\overline{0}0 2.500E+00 2.500E+00
1.300E+01 2.000E+01 1.300E+01 1.050E+01
2.750E+01 2.000E+01 2.000E+01 7.000E+00
    4.250E+02
    2.270E+02
    0.30
    5.850E+02 3.710E+02
    0.16
    1.994E+03 3.710E+02
    0.48
2.750E+01 2.750E+01 2.750E+01 7.500E+00
    1.994E+03 4.900E+02
    0.47
```


[^0]: ${ }^{1}$ Menlo Park, CA 94025
 ${ }^{2}$ Denver, CO 80225

[^1]:

[^2]: $\mathrm{vl}(\mathrm{ft} / \mathrm{s})=$ lower limit of velocity in feet per second
 $\mathrm{vu}(\mathrm{ft} / \mathrm{s})=$ upper limit of velocity in feet per second

[^3]:
 寝
 名

[^4]:

