
U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY

BOREHOLE VELOCITY MEASUREMENTS AT FIVE SITES THAT RECORDED THE CAPE MENDOCINO, CALIFORNIA EARTHQUAKE OF 25 APRIL, 1992

by

James F. Gibbs¹, John C. Tinsley¹, and David M. Boore¹

U.S. Geological Survey Open-File Report OF 02-203

This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

¹Menlo Park, CA 94025

U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY

BOREHOLE VELOCITY MEASUREMENTS AT FIVE SITES THAT RECORDED THE CAPE MENDOCINO, CALIFORNIA EARTHQUAKE OF 25 APRIL, 1992

by

James F. Gibbs¹, John C. Tinsley¹, and David M. Boore¹

U.S. Geological Survey Open-File Report OF 02-203

This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

¹Menlo Park, CA 94025

TABLE OF CONTENTS

Page
troduction
and S -Wave Travel-Time Data
egional Map
mmary Velocity Profiles
knowledgments
eferences
ppendix A-Detailed Results: College of the Redwoods Fortuna Fire Station Loleta Fire Station Redwood Village Mall Rio Dell
opendix B–Poisson's Ratios:
College of the Redwoods
Fortuna Fire Station
Loleta Fire Station
Redwood Village Mall

BOREHOLE VELOCITY MEASUREMENTS AT FIVE SITES THAT RECORDED THE CAPE MENDOCINO, CALIFORNIA EARTHQUAKE OF 25 APRIL, 1992

by

James F. Gibbs, John C. Tinsley, and David M. Boore

INTRODUCTION

The U.S. Geological Survey (USGS), as part of an ongoing program to aquire seismic velocity and geologic data at locations that recorded strong-ground motion during earthquakes, has investigated five sites in the Fortuna, California region (Figure 1). We selected drill sites at strong-motion stations that recorded high accelerations (Table 1) from the Cape Mendocino earthquake (M 7.0) of 25 April 1992 (Oppenheimer et al., 1993). The boreholes were drilled to a nominal depth of 95 meters (310 ft.) and cased with schedule 80 pvc-casing grouted in place at each location. S-wave and P-wave data were acquired at each site using a surface source and a borehole three-component geophone. This report contains the velocity models interpreted from the borehole data and gives reference to locations and peak accelerations at the selected strong-motion stations.

P- AND S-WAVE TRAVEL-TIME DATA

Shear waves were generated at the ground surface by an air-powered horizontal ram (Liu $et\ al.$, 1988) striking an anvil at either end of an aluminum channel 2.3 m long. The ram was driven first in one direction and then in the other to generate pulses of opposite polarity. A switch attached to the shear source triggered the recorder and established the reference for the timing of arrivals. P-waves were generated by striking a steel plate with a sledge hammer. The recorder was triggered by a switch attached to the handle of the sledge hammer. P- and S-wave sources were offset from the borehole (same horizontal distance but different locations) to minimize the effect of waves traveling down the grout surrounding the casing. The source offset was 4 meters except at Rio Dell where available space limited the offset to 3.5 meters. These offsets are shown in the data tables.

Downhole measurements were made at 2.5 m intervals (starting at 2 meters depth) with a three-component geophone clamped to the casing by an electrically-activated lever arm. A second three-component geophone was placed on the surface 5 to 10 m from the shear source for recording an on-scale reference trace (useful for amplitude studies and timing verification). The data were recorded on diskettes using a 12-channel recording system.

VELOCITY PROFILES

The procedure for determining velocities is summarized in Figure 2. Because the orientation of the downhole geophone could not be controlled when moving from one depth to the next, the azimuth of the horizontal geophones relative to the source was unknown and changed with depth. To minimize the effects of those changes, the horizontal components were rotated to the direction that maximized the integral square amplitude within a time interval containing the shear wave (Boatwright $et\ al.$, 1986). P- and S-wave first-arrival times were determined from the time series displayed at each depth on a 20-inch computer screen. The P-wave arrival-time was obtained from the vertical trace, and the S-wave

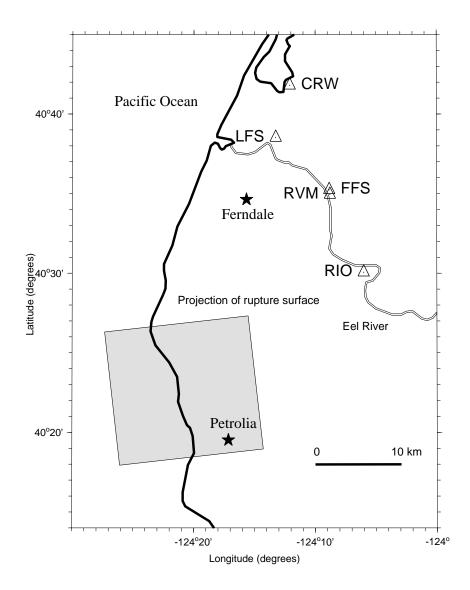


Figure 1. Regional map showing the locations of boreholes (triangles) included in this report. LFS and RIO are in the towns of Loleta and Rio Dell, respectively, and RVM and FFS are in the town of Fortuna. Locations of river and coastline are approximate. The projection of the fault rupture for the 1992 Cape Mendocino mainshock (shaded) corresponds to model B of Murray et al. (1996).

Table 1. Site names, station codes, coordinates using North American Datum of 1927 (NAD27) and 1983 (NAD83), and peak horizontal accelerations.

Station Name	StaCode	Lat:NAD27	Long:NAD27	Lat:NAD83	Long:NAD83	pga (cm/s^2)
College of the Redwoods	CRW	40.69913	-124.20045	40.69898	-124.20162	171
Fortuna Fire Station	FFS	40.58969	-124.14630	40.58954	-124.14746	349
Loleta Fire Station	LFS	40.64438	-124.21976	40.64423	-124.22093	252
Redwood Village Mall (Fortuna)	RVM	40.58472	-124.14538	40.58457	-124.14654	114
Rio Dell	RIO	40.50334	-124.09913	40.50320	-124.10029	539

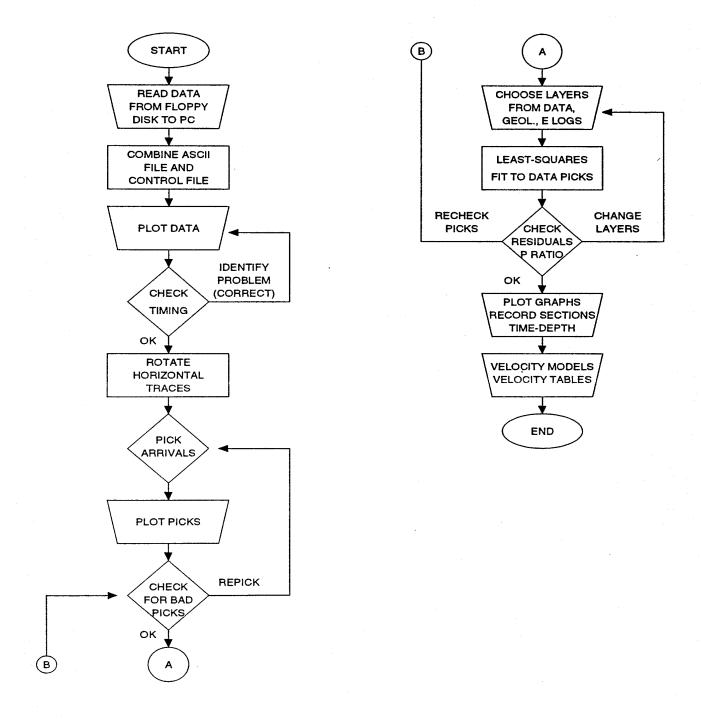


Figure 2. Flow-chart outlining the data processing and steps in the interpretation.

arrival-times were obtained from the average of the rotated horizontal traces for ram strikes in opposite directions. The arrivals were timed to the nearest millisecond, probably a realistic precision for clear arrivals uncontaminated by noise.

A trial set of layer boundaries was chosen for the S-wave model, based on the lithologic descriptions and geophysical logs. The travel-time data were fit in a least-squares sense by a model made up of constant velocity layers, taking into account refraction across the interfaces between layers. The travel times were weighted by the inverse of an assigned normalized variance. A normalized standard deviation of 1 was assigned to the clear arrivals and values up to 5 were assigned to the others. The residuals were examined, and layer boundaries were added, if necessary, to reduce large residuals or to remove systematic trends in the residuals. This was an iterative process conducted by the team of authors of this report. The process continued until the team was satisfied that the interfaces were consistent with the borehole seismic data as well as available geological and geophysical logs. The P-wave travel time data were analyzed initially with the set of layer boundaries finally determined for the S-wave data. Layer boundaries were then added if needed to fit the data and deleted if not needed. Commonly, an additional layer boundary corresponding to the top of the zone of water saturation was needed to fit the P-wave data.

Some of the dynamic Poisson's ratios σ , calculated with initial velocity models, resulted in ratios that were out of the accepted range of values (0.0–0.5). To obtain a value in the acceptable range we made minor adjustments to the velocities using one or more of the following procedures: repicking shallow arrivals (usually P arrivals because small changes in P travel-times have greater effect on σ), adding a shallow layer, and/or adjusting layer thickness to ensure that Poisson's ratio was in the range 0.0–0.5. In most cases the small changes were made in the P-wave velocities at shallow depths (for more details see, Gibbs $et\ al.$, 2000). Overall, the changes in velocity required to produce acceptable values of σ were small and were only in a few layers.

SUMMARY VELOCITY PROFILES

Figures 3 and 4 show the S- and P-wave velocity profiles determined from the borehole measurements at the five sites. The velocity profiles are plotted at the same scale for ease of comparison.

DESCRIPTION OF APPENDICES

Appendix A contains for each site: a location map, S- and P-wave time-series records, a time-depth plot, velocity profiles with a generalized geologic log, and tables giving arrival times and velocity values. The upper and lower bounds on the velocity plots show approximate 68 percent confidence limits. The bounds are not symmetrical because they are based on the inverse velocities in the layers. Appendix B contains tables of P- and S-wave velocity models and the Poisson's ratios obtained from those models.

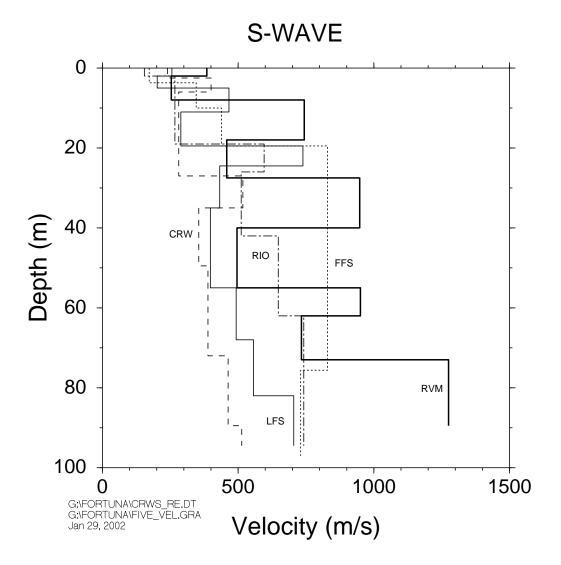


Figure 3. S-wave velocity models from all five boreholes (see Figure 1, Table 1) shown on the same figure for comparison.

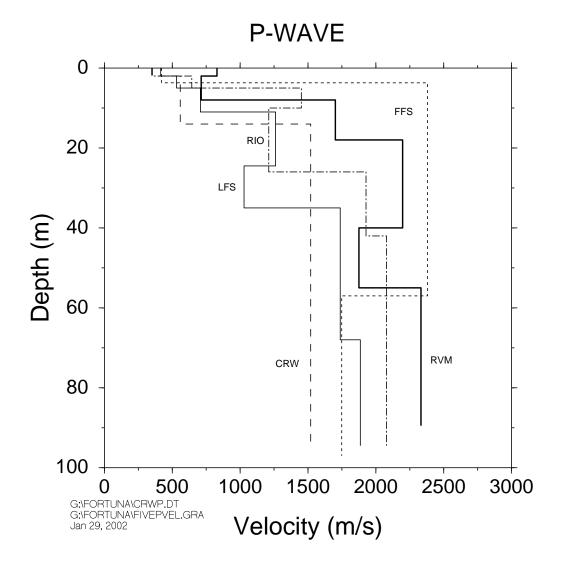


Figure 4. S-wave velocity models from all five boreholes (see Figure 1, Table 1) shown on the same figure for comparison.

ACKNOWLEDGMENTS

We could not have completed these studies without the assistance of many individuals who helped us to gain access to the sites, assisted with utilities clearances and granted permission to conduct the studies. We thank Tom Fumal for his careful review of the manuscript.

REFERENCES

- Boatwright, J., R. Porcella, T. Fumal, and H.-P. Liu (1986). Direct estimates of shear wave amplification from a borehole near Coalinga, California, *Earthquake Notes* **57**, 8.
- Gibbs, J.F., J.C. Tinsley, D.M. Boore, and W.B. Joyner (2000). Borehole velocity measurements and geological conditions at thirteen sites in the Los Angeles, California region, U.S. Geol. Surv. Open-File Rept. 00-470, 118p.
- Liu, H.-P., R.E. Warrick, R.E. Westerlund, J.B. Fletcher, and G.L. Maxwell (1988). An air-powered impulsive shear-wave source with repeatable signals, *Bull. Seism. Soc. Am.* **78**, 355–369.
- Oppenheimer, D., G. Beroza, G. Carver, L. Dengler, J. Eaton, L. Gee, F. Gonzalez, A. Jayko, W. H. Li, M. Lisowski, M. Magee, G. Marshall, M. Murray, R. McPherson, B. Romanowicz, K. Satake, R. Simpson, P. Somerville, R. Stein, and D. Valentine (1993). The Cape Mendocino, California, earthquakes of April 1992: Subduction at the triple junction, *Science* **261**, 433–438.
- Murray, M.H., G.A. Marshall, M. Lisowski, and R.S. Stein (1996). The 1992 M=7 Cape Mendocino, California, earthquake: Coseismic deformation at the south end of the Cascadia megathrust, J. Geophys. Res. 101, 17,707–17,725.

APPENDIX—A

Detailed Results

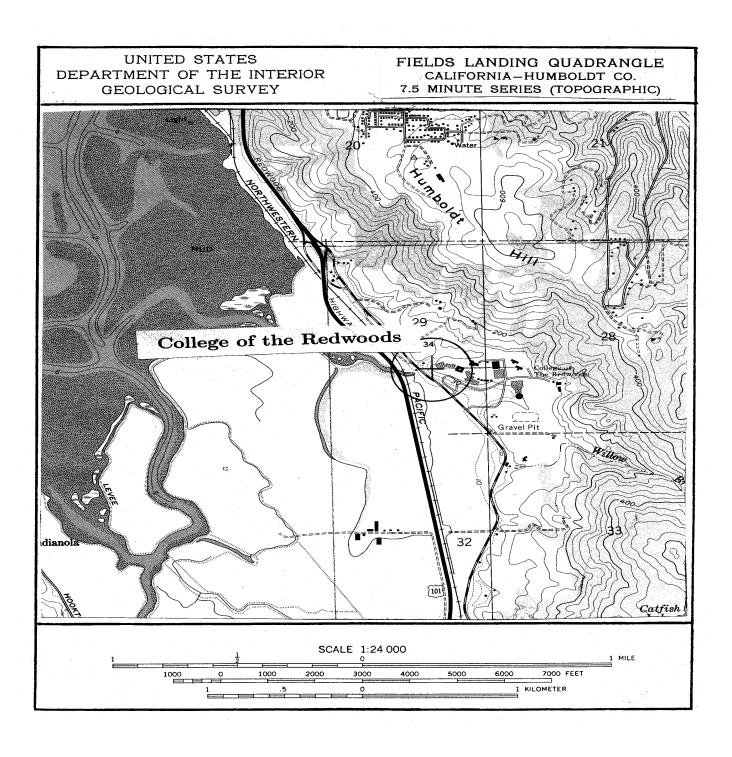


Figure A-1. Site location map for the borehole at College of the Redwoods. The accelerograph is located approximately 30 meters from the borehole.

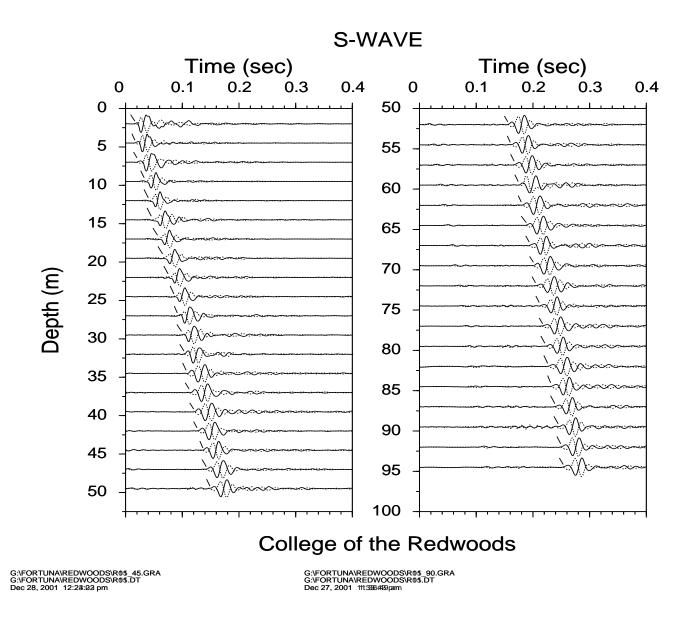


Figure A-2. Horizontal component record section (from impacts in opposite directions) superimposed for identification of S-wave onset. Approximate S-wave time picks are indicated by the hatch marks.

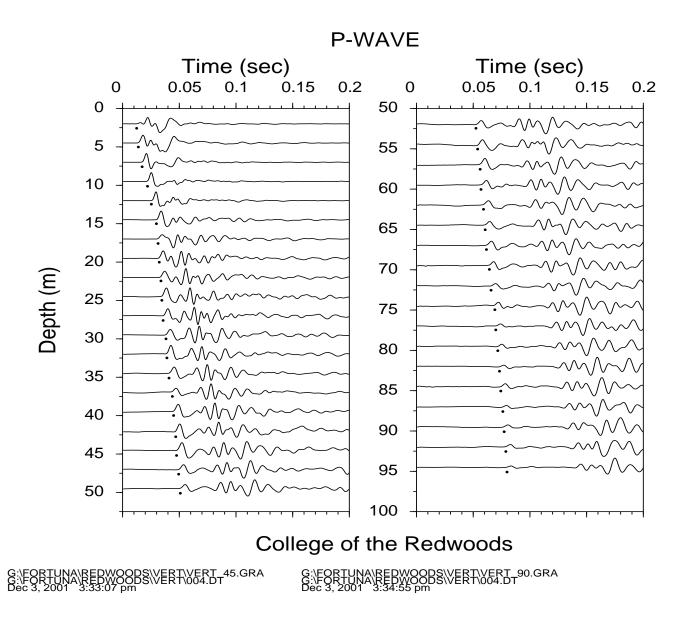


Figure A-3. Vertical component record section. Approximate P-wave arrivals are indicated by the dots.

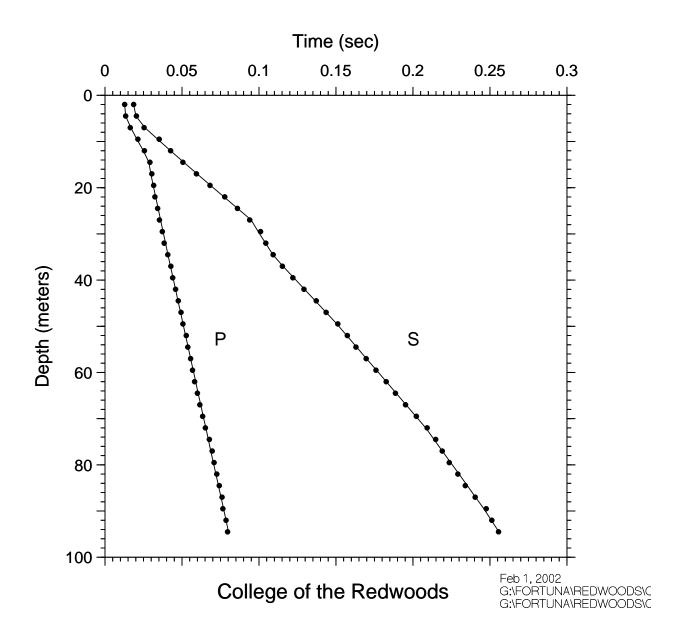


Figure A-4. Time-depth graph of P-wave and S-wave picks. Line segments are straightline interpolations of model predictions at the observation depths. The times for zero depth, not shown, are given by the horizontal offset (hoffset) divided by the velocity in the uppermost layer (see accompanying tables of velocities for specific values).

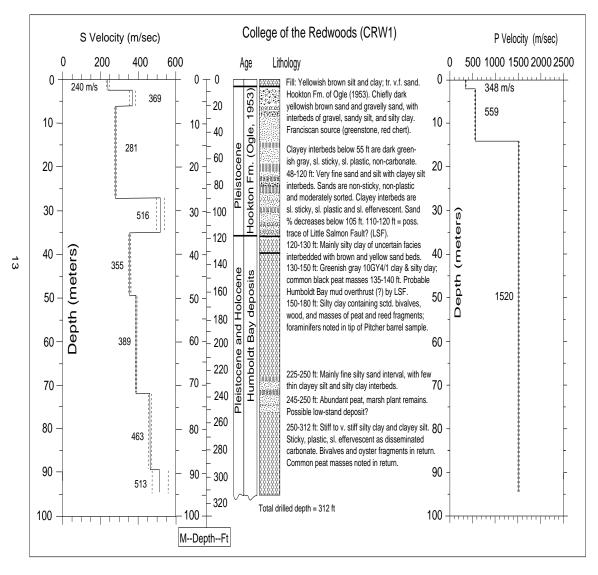


Figure A-5. S- and P-wave velocity profiles with dashed lines representing one standard deviation.

TABLE A-1. S-wave arrival times and velocity summaries.

Location: College of the Redwoods: S Coordinates: 40.69913-124.20045 Hole_Code: 308 hoffset= 4.00 travel-timefile: G:\FORTUMA\REDWOODS\CRWS_RE.IT nlayers= 8

•	v(m/s) vl(m/s) vu(m/s) dth(ft) th 240 231 249 6.6	4.0 369 354 386 19.7 13.1 1210 1160	21.0 281 279 284 88.6 68.9 923	8.0 516 497 538 114.8 26.2 1694 1630 ;	14.5 355 350 360 162.4 47.6 1165 1147	22.5 389 385 393 236.2 73.8 1276 1264 ;	17.5 463 456 471 293.6 57.4 1520 1496 ;	5.0 513 474 560 310.0 16.4 1684 1555 ;					Explanation:	d(m) = depth in meters	d(ft) = depthin feet	tsl(s) = observedarrivaltime in seconds (from source	to receiver, along a slant path). For the arrival	times used in the S-wave model, the times are the	average of picks from traces obtained from hammer	blows differing in direction by 180 degrees.	tvrt(s) = vertical travel time computed from the model	vavg(m/s)=averagevelocity from the surfaceto each depth,	computed as a $g_vel = d(m)/tvrt(s)$	sig = sigma, standarddeviationnormalizedto the	standarddeviationof best picks	Ö				v1(m/s) = lower limit of velocity in meters per second	(see text for explanationof velocity limits)	<pre>vu(m/s) = upper limit of velocity in meters per second</pre>	<pre>dth(ft) = depth to bottom of layer in feet</pre>	II	v(tt/s) = velocity of layer in feet per second		vu(ft/s) = upper limit of velocity in feet per second	
	sig rsdl(sec) 1 -0.0001	1 0.0005	1 -0.0006	1 0.0010	1 0.0000	1 -0.0006	1 -0.0004	1 -0.0003	1 0.0005	1 0.0000	1 -0.0008	1 0.0015	1 0.0001	1 0.0002	1 -0.0004	1 -0.0006	1 -0.0004	1 0.0006	1 0.0000	1 0.0006	1 0.0004	1 -0.0004	1 -0.0002	1 -0.0003	1 -0.0001	1 -0.0005	1 -0.0003	1 0.0003	1 0.0009	1 0.0011	1 -0.0001	1 -0.0009	1 -0.0007	1 -0.0013	1 -0.0002	1 0.0016	1 0.0003	1 -0.0002
	xvg(m/s)s: 240	298	308	300	596	293	291	290	289	288	288	299	309	318	322	324	325	327	328	329	332	334	336	338	340	342	343	345	346	349	352	354	357	329	362	364	367	370
	tsl(s) tvrt(s) vavg(m/s) 0.0186 0.0083 240	0.0151	0.0227	0.0316	0.0405	0.0494	0.0583	0.0672	0.0761	0.0850	0.0939	0.0988	0.1036	0.1084	0.1150	0.1221	0.1291	0.1362	0.1432	0.1503	0.1567	0.1631	0.1695	0.1760	0.1824	0.1888	0.1952	0.2017	0.2081	0.2135	0.2189	0.2243	0.2297	0.2351	0.2405	0.2459	0.2508	0.2556
	ts1(s)t 0.0186	0.0204	0.0254						0.0778	0.0860	0.0940	0.1010	0.1044	0.1092	0.1152	0.1220	0.1292	0.1372	0.1436	0.1512	_	_		0.1760	0.1826	0.1886	0.1952	0.2022	0.2092	0.2148	0.2190	0.2236	0.2292			0.2476	_	0.2556
	d(ft) 6.6		23.0			47.6																																310.0
	d(m) 2.0	4.5	7.0	9.5	12.0	14.5	17.0	19.5	22.0	24.5	27.0	29.8	32.0	34.5	37.0	39.8	42.0	44.5	47.0	49.5	52.0	54.5	57.0	59.5	62.0	64.5	67.0	69.5	72.0	74.5	77.0	79.5	82.0	84.5	87.0	89.5	92.0	94.5

IMBLE A-2. P-wave arrivaltimes and velocity summaries.

Coordinates: 40.69913-124.20045 Hole Code: 308

dtb(ft)thk(ft)v(ft/s)vl(ft/s)vu(ft/s) to receiver, along a slant path). For the arrival times used in the S-wave model, the times are the average of picks from traces obtained from hammer vavg(m/s) = average velocity from the surface to each depth, observedarrivaltime in seconds (from source rsdl(sec)=residual(observed- fittedtraveltime),in blows differing in direction by 180 degrees. vertical travel time computed from the model sigma, standarddeviationnormalizedto the computed as avg vel = d(m)/tvrt(s) standard deviation of best picks 6.6 45.9 310.4 = depth in meters = depth in feet dtb(m) thk(m) v(m/s) v1(m/s) vu(m/s) 2.0 2.0 348 336 361 14.0 12.0 559 552 566 94.6 80.6 1520 1512 1528 3xplanation: tvrt(s) d(ft) tsl(s) (a) ო nlayers = s) vavg(m/s) sig rsdl(sec)
24 40 1 0.0000
47 476 1 0.0000
47 476 1 0.0000
48 508 1 0.0007
50 526 1 0.0007
50 526 1 0.0007
51 526 1 0.0007
52 677 1 0.0003
54 755 1 0.0003
54 755 1 0.0003
55 874 1 0.0003
56 920 1 0.0002
57 848 1 0.0003
58 74 1 0.0003
58 920 1 0.0003
59 941 1 0.0002
50 956 1 0.0003
51 956 1 0.0003 .0407 .0423 .0440 .0456 0.0102 0.0147 0.0192 0.0236 0.0275 0.0308 0.0325 0.0325 0.0358 0473 tsl(s) tvrt(s) 0.0057 0.0128
0.0134
0.0134
0.0134
0.0252
0.0324
0.03384
0.03784
0.03884
0.04788
0.04788
0.04788
0.06588
0.06588
0.06588
0.06588
0.06588
0.06588
0.06588
0.06588
0.06588
0.06588
0.06588
0.06588
0.06588
0.06588
0.06588
0.06588
0.06588
0.06588
0.06588
0.06588
0.06588
0.06588
0.06588
0.06588
0.06588
0.06588
0.06588
0.06588
0.06588
0.06588
0.06588
0.06588
0.06588
0.06588 121.4 129.6 137.8 146.0 154.2 170.6

1104 1810 4960

1143 1833 4986

6.6 39.4 264.4

(see text for explanationof velocity limits) vl(m/s) = lower limit of velocity in meters per second vu(m/s) = upper limit of velocity in meters per second v(ft/s) = velocity of layer in feet per second vl(ft/s) = lower limit of velocity in feet per second vu(ft/s) = upper limit of velocity in feet per second velocity of layer in meters per second = depth to bottom of layer in feet = thicknessof layer in feet dtb(ft) thk (ft) V(m/s) 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 1012 1027 1041 1055 1067 1079 1101 0.0621 .0670 0.0604

-0.004

= depth to bottom of layer in meters

= thicknessof layer in meters

dtb(m) thk(m)

187.0 195.2 203.4

211.6 219.8 228.0 236.2

244.4 252.6 260.8 269.0

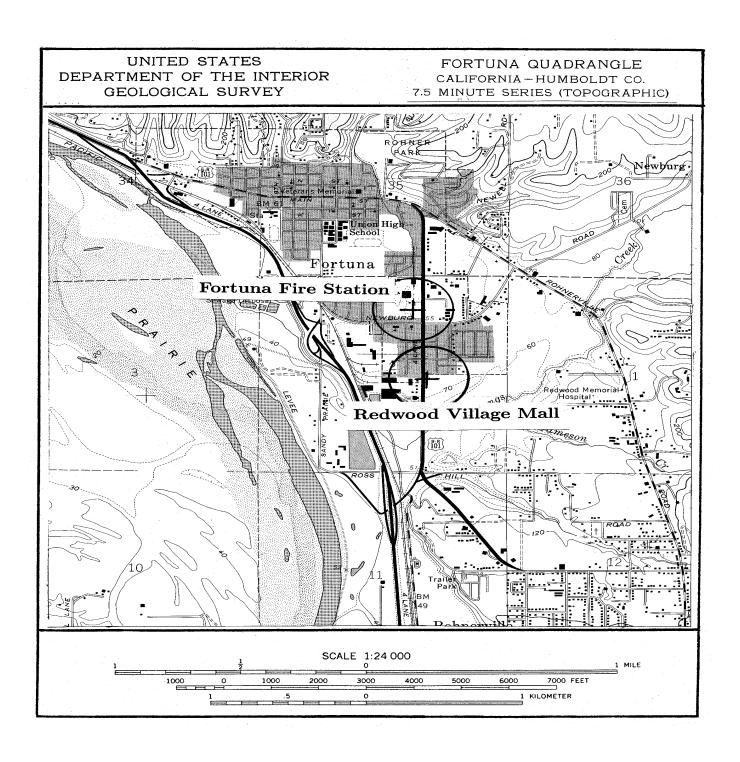


Figure A-6. Site location map for the borehole at Fortuna Fire Station. The accelerograph is located approximately 35 meters from the borehole.

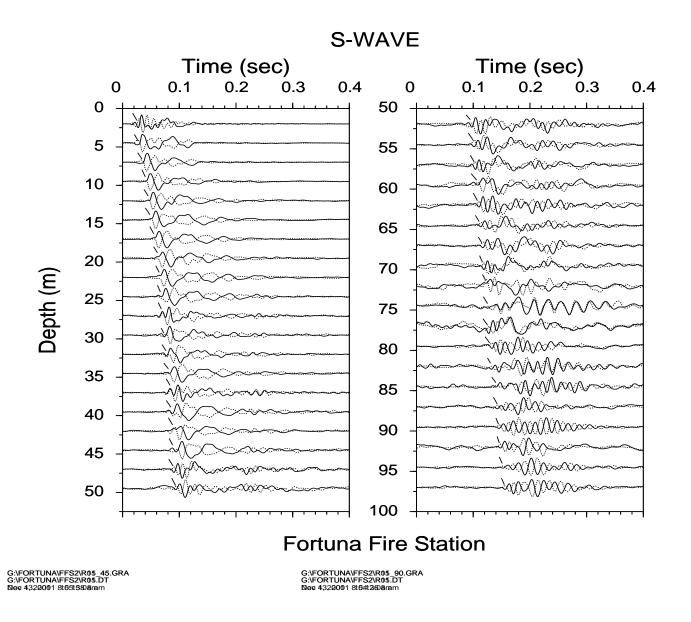


Figure A-7. Horizontal component record section (from impacts in opposite directions) superimposed for identification of S-wave onset. Approximate S-wave time picks are indicated by the hatch marks.

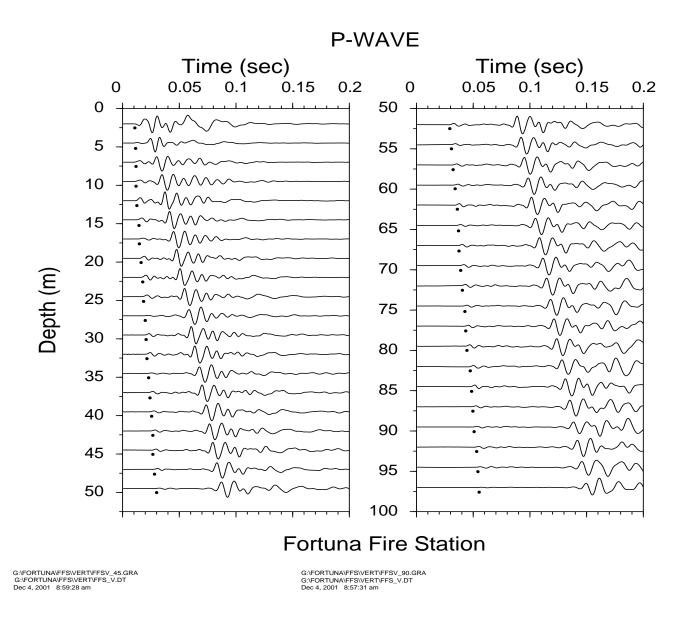


Figure A-8. Vertical component record section. Approximate P-wave arrivals are indicated by the dots.

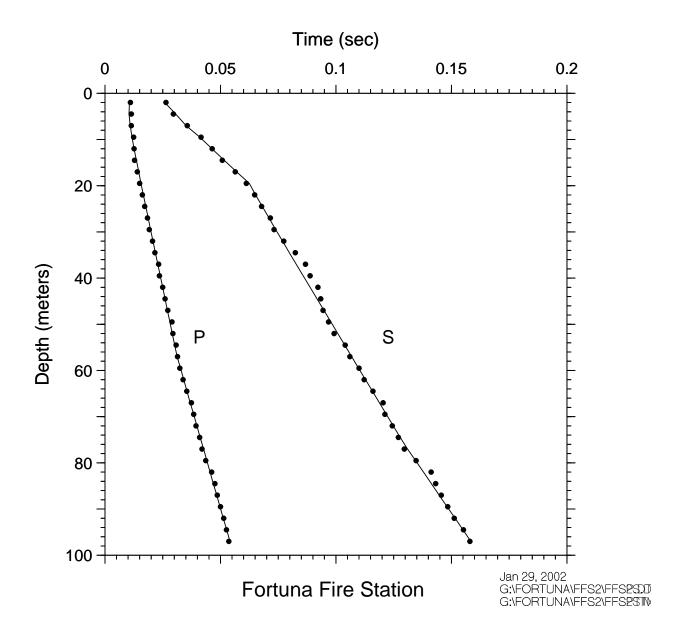


Figure A-9. Time-depth graph of P-wave and S-wave picks. Line segments are straightline interpolations of model predictions at the observation depths. For the depth intervals 37-44.5 m and 72-87 m arrival times were difficult to pick and were downweighted in fitting the model. The times for zero depth, not shown, are given by the horizontal offset (hoffset) divided by the velocity in the uppermost layer (see accompanying tables of velocities for specific values).

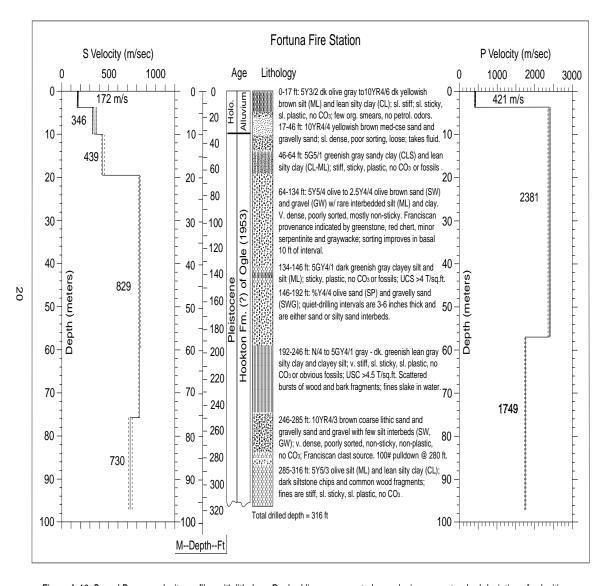


Figure A-10. S- and P-wave velocity profiles with lithology. Dashed lines represent plus and minus one standard deviation of velocities.

TABLE A-3. S-wave arrivaltimes and velocity summaries.

ou(ft/s)	1202	1495	2749	2463									val	þe	ier							S																
vl(ft/s).	1073	1388	2694	2332								source	the arri	mes are t	from hamm	grees.	model	ach depth		o the		e), in se				second	limits)	second				cond	cond					
dtb (ft) thk (ft) v(ft/s) vl (ft/s) vu(ft/s	1134	1439	2721	2396								observedarrivaltime in seconds (from source	to receiver, along a slant path). For the arrival	times used in the S-wave model, the times are the	average of picks from traces obtained from hammer	blows differing in direction by 180 degrees.	= vertical travel time computed from the model	vavg(m/s) = average velocity from the surface to each depth,	computed as avg vel = d(m)/tvrt(s)	malizedt	cks	rsdl(sec)=residual(observed- fittedtraveltime), in secs	eters		 velocity of layer in meters per second 	 lower limit of velocity in meters per second 	see text for explanationof velocity limits	upper limit of velocity in meters per second	eet		second	vl(ft/s) = lower limit of velocity in feet per second	 upper limit of velocity in feet per second 					
thk(ft)	20.7	31.2	184.1	70.2								in seco	slant pa	ave mode	traces (rection)	computed	the sur	d(m)/tv	tionnor	best pi	fitted	yer in m	meters	meters p	tyin me	tionof 1	tyin me	yer in f	feet	feet per	tyin fe	tyin fe					
dtb(ft)	32.8	64.0	248.0	318.2						SIS		valtime	alonga	the S-w	cks from	ing in di)	reltime (ity from	vg vel=	arddevia	ationof.	served-	comof lay	layer in	ayer in 1	f veloci	explana	f veloci	comof lay	layer in	ayer in	f veloci	f veloci					
vu(m/s)	366	456	838	751						= depth in meters	= depth in feet	rvedarri	eceiver,	s used in	age of pi	s differ:	icaltran	ageveloc	utedas a	a, standa	standard deviation of best picks	dual (obs	= depth to bottom of layer in meters	= thicknessof layer in meters	cityof 1	r limit o	text for	r limit o	depth to bottom of layer in feet	= thicknessof layer in feet	velocity of layer in feet per second	r limit o	r limit o					
vl(m/s) vu(m/s)	327	423	821	711					cion:	= dept	= dept	= obse	to K	time	aver	blow	= vert	/s)=aver	Comp	a Sign	stan	ac)=resi	= dept	= thic	= velo	_	(See	II	II	II	II	s) = lowe	s) = uppe					
7(m/s)	346 346								Explanation:	(B)	ď(£	ts1(s)					tvrt(s)	vavg(m)	•	sig		rsdl(se	dtp(m)	thk (m)	V(m/s)	v1(m/s)		vu(m/s)	dtb(ft)	thk (ft)	v(ft/s)	vl(ft/s	vu(ft/s)					
thk (n	, w	9.5	56.1	21.4																																		
dtb(m)	70.0	19.5	75.6	97.0																																		
sdl(sec)	-0.0010	0.0005	0.0005	0.0001	-0.0008	-0.0006	-0.0013	-0.0004	-0.0003	9000.0	-0.0007	0.0005	0.0026	0.0040	0.0030	0.0034	0.0016	-0.0004	-0.0010	-0.0016	0.0002	-0.0008	0.0002	-0.0006	0.0002	0.0016	-0.0006	-0.0004	-0.0008	-0.0014	0.0002	0.0033	0.0019	0.0009	0.0003	-0.0004	0.0002	-0.0004
sig r		-	٦	٦	-	-	٦	٦	ч	٦	-	٦	٦	7	7	7	7	ч	٦	-	٦	П	٦	٦	٦	٦	٦	7	ო	٦	٦	2	ო	ო	٦	-	-	-
tort(s) vavg(m/s) sig rsdl(sec	189	225	248	271	290	302	318	342	364	383	402	419	434	449	462	475	486	497	202	517	526	535	543	220	228	265	571	577	283	288	265	595	298	601	604	607	610	613
tvrt(s)	0.0238		0.0383	0.0443	0.0500			0.0644	0.0674			0.0764						0.0945		0.1006	0.1036	0.1066	0.1096	0.1126	0.1156	0.1187	0.1217		_	0.1309	0.1344	0.1378		0.1446			_	0.1583
	0.0296	0.0356	0.0416	0.0464	0.0508	0.0564	0.0612	0.0648	0.0678	0.0716	0.0732	0.0774	0.0824	0.0868	0.0888	0.0922	0.0934	0.0944	0.0968	0.0992	0.1040	0.1060	0.1100	0.1122	0.1160	0.1204	0.1212	0.1244	0.1270	0.1296	0.1347	0.1412	0.1432	0.1456	0.1484	0.1512	0.1552	0.1580
d(ft)			31.2	39.4	47.6	82.8	64.0	72.2	80.4		8.96	105.0	113.2	121.4	129.6	137.8	146.0	154.2	162.4	170.6	178.8	187.0	195.2	203.4	211.6	219.8	228.0	236.2	244.4	252.6	260.8	269.0		285.4			310.0	318.2
d (m)	2.4	7.0	9.5	12.0	14.5	17.0	19.5	22.0	24.5	27.0	29.8	32.0	34.5	37.0	39.5	42.0	44.5	47.0	49.5	52.0	54.5	57.0	59.5	62.0	64.5	67.0	69.5	72.0	74.5	77.0	79.5	82.0	84.5	87.0	89.2	92.0	94.5	97.0

TABLE A-4. P-wave arrival times and velocity summaries.

(m) thk(m) v(m/s) v1(m/s) vn1(m/s) dth(ft) thk(ft) v(ft/s) v1(ft/s) vn1(ft/s)	0.00 mm, 0.0						nati		a(IC) = depth In rest ts](s) = observed arriveltime in seconds (from source		times used in the S-wave model, the times are the	average of picks from traces obtained from hammer	blows differing in direction by 180 degrees.	tvrt(s) = vertical travel time computed from the model	vavg(m/s)=averagevelocity from the surfaceto each depth,	computed as $avg_vel = d(m)/tvrt(s)$	sig = sigma, standard deviationnormalized to the	standard deviation of best picks	Ü			v(m/s) = velocity of layer in meters per second	<pre>vl(m/s) = lower limit of velocity in meters per second</pre>			II	II	v(ft/s) = velocity of layer in feet per second	v1(ft/s) = lower limit of velocity in feet per second	<pre>vu(ft/s) = upper limit of velocity in feet per second</pre>							
nel(e) turt(e) usua(m/e) eia redl(sec) d		0.0010		0.000	-0.0008	-0.0006	-0.0006	-0.0004	-0.0003	-0.0005	-0.0002	-0.0002	0.0003	-0.0003	0.000	0.000	0.0002	0.0009	0.0003	9000.0	0.0002	-0.0003	-0.0003	-0.0001	0.0005	0.000	-0.0004	-0.0002	-0.0007	-0.0005	0.0007	0.0007	0.0002	0.0002	0.0002	-0.000I	-0.000
o's (s	5-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1		-	П	٦.	٦,	٦,	٦,	٦-	- 1	Т	ч	П	П	٦	٦	-	٦	Т	-	-	٦	Т	-	П	ч	ч	ч	П	П	П	-	٦.	٦.	٦,	٦-	-
/m/D/14/	421	7 89 # 90	846	978	1088	1183	1264	9997 1999	1454	1503	1548	1588	1625	1658	1688	1717	1742	1766	1789	1809	1828	1825	1822	1819	1816	1814	1811	1809	1807	1805	1803	1802	1800	1799	1797	1796	1/30 T
wrt.(<) t	0.0048	0.0091	0.0112	0.0123	0.0133	0.0144	0.0154	0.0165	0.0175	0.0196	0.0207	0.0217	0.0228	0.0238	0.0249	0.0259	0.0270	0.0280	0.0291	0.0301	0.0312	0.0326	0.0340	0.0355	0.0369	0.0383	0.0398	0.0412	0.0426	0.0440	0.0455	0.0469	0.0483	0.0498	0.0512	0.0526	0.0040
te](s)t	0.0110	0.0114			0.0128	0.0140	0.0150	0.0162	0.01/2	0.0192	0.0206	0.0216	0.0232	0.0236	0.0250	0.0260	0.0272	0.0290	0.0294	0.0308	0.0314	0.0324	0.0338	0.0354	0.0374	0.0384	0.0394	0.0410	0.0420	0.0436	0.0462	0.0476	0.0486	0.0200	0.0514	0.0526	0.0559
d(#)	9.9	23.0	31.2	39.4	47.6		4. 0 ⊃. 0	7.77	# 4 0 0 0 0	96.8	105.0	113.2	121.4	129.6	137.8	146.0	154.2	162.4	170.6	178.8	187.0	195.2	203.4	211.6	219.8	228.0	236.2	244.4	252.6	260.8			285.4	293.6	301.8	310.0	3.018
(m)	2.0	, C	9.5	12.0	14.5	17.0	2.0 7.0	22.0	24.9	29.5	32.0	34.5	37.0	39.8	42.0	44.5	47.0	49.5	52.0	54.5	57.0	59.5	62.0	64.5	67.0	69.5	72.0	74.5	77.0	79.5	82.0	84.5	87.0	89.5	92.0	2. c	97.0

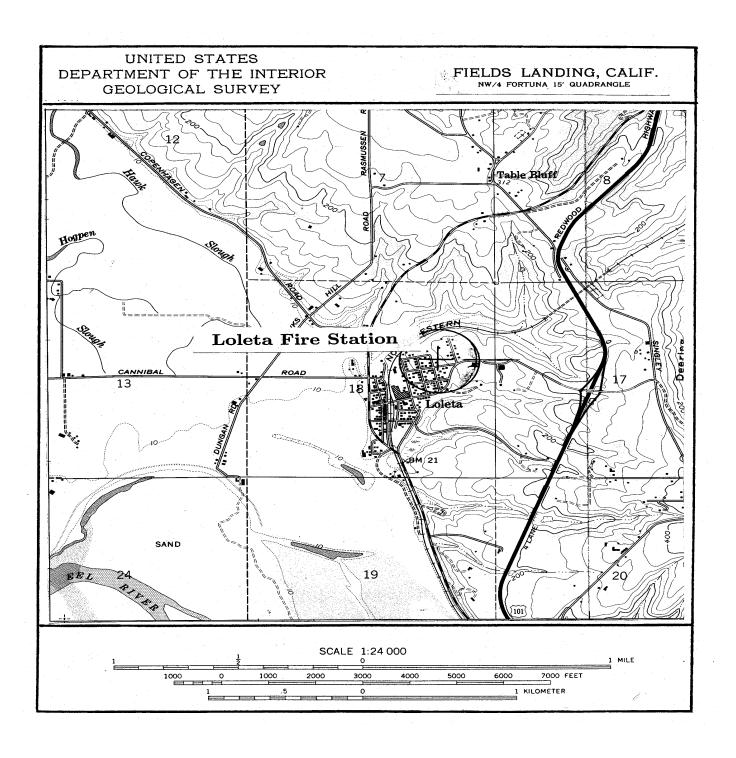


Figure A-1. Site location map for the borehole at Loleta Fire Station. The accelerograph is located approximately 15 meters from the borehole.

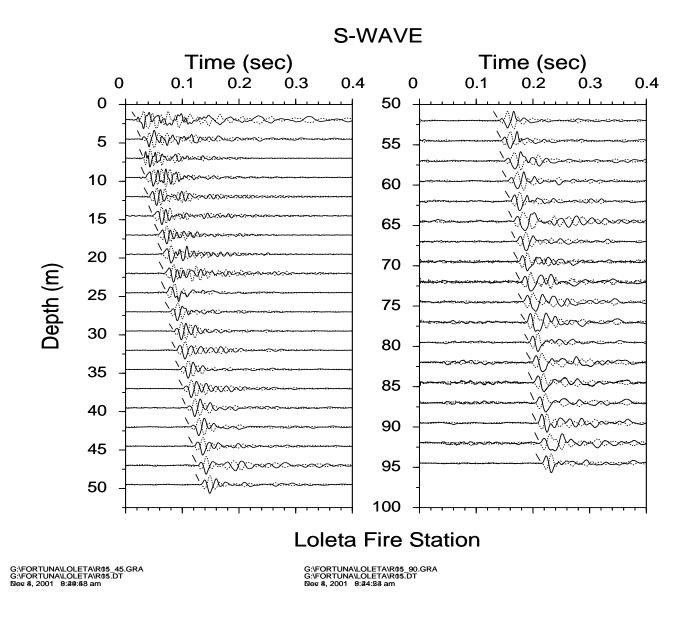


Figure A-12. Horizontal component record section (from impacts in opposite directions) superimposed for identification of S-wave onset. Approximate S-wave time picks are indicated by the hatch marks.

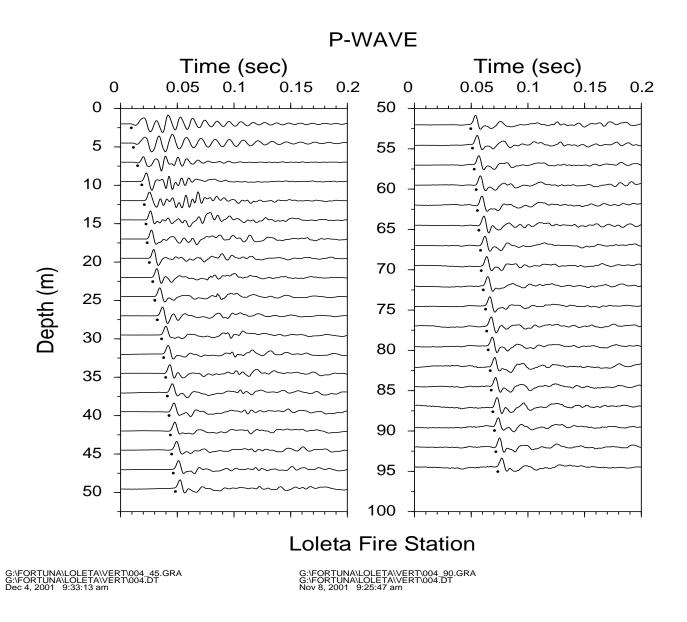


Figure A-13. Vertical component record section. Approximate P-wave arrivals are indicated by the dots.

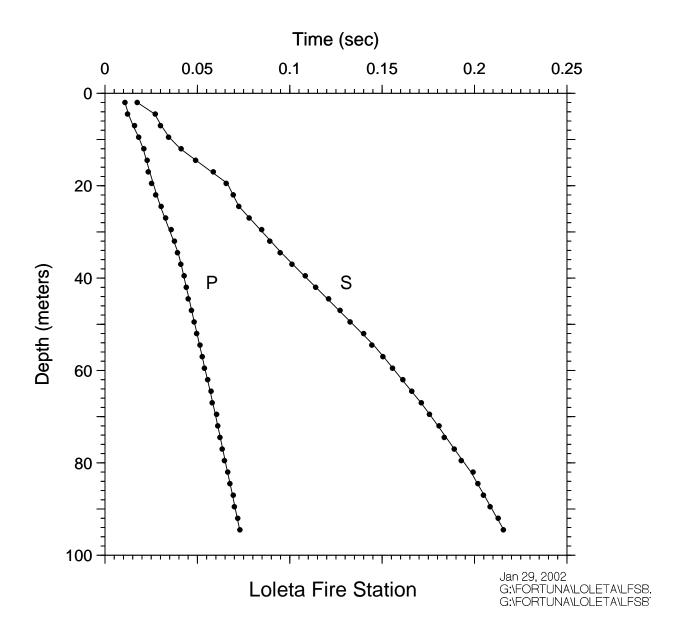


Figure A-14. Time-depth graph of P-wave and S-wave picks. Line segments are straightline interpolations of model predictions at the observation depths. The times for zero depth, not shown, are given by the horizontal offset (hoffset) divided by the velocity in the uppermost layer (see accompanying tables of velocities for specific values).

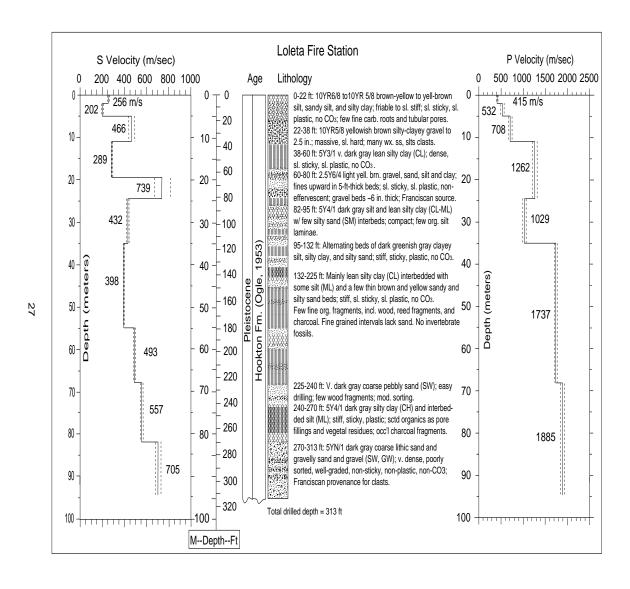


Figure A-15. S- and P-wave velocity profiles with lithology. Dashed lines represent plus and minus one standard deviation of velocities.

TABLE A-5. S-wave arrival times and velocity summaries.

) vl(m/s) vu(m/s) dtb(ft) thk(ft) v(ft/s) vl(247 265 6.6 6.6 840 193 211 16.4 9.8 662 441 494 36.1 19.7 1529 282 296 64.0 27.9 948 674 817 80.4 16.4 2424 473 14.8 34.4 1418	422 443 114:0 54:4 1410 1554 483 503 223.1 42.7 1616 1585 545 569 269.0 45.9 1826 1787 681 731 310.0 41.0 2313 2233 action:	<pre>d(m) = depth in meters d(ft) = depth in feet csl(s) = observedarrivaltime in seconds (from source to receiver, along a slant path). For the arrival times used in the S-wave model, the times are the average of picks from traces obtained from hammer blows differingin directionby 180 degrees. tort(s) = vertical travel time computed from the model vavg(m/s) = average velocity from the surface to each depth, computed as avg vel = d(m)/tryt(s) sig = sigma, standard deviation normalized to the standard deviation of best picks standard deviation of best picks standard deviation of best picks standard deviation of layer in meters thk(m) = thicknessof layer in meters v(m/s) = velocity of layer in meters per second vl(m/s) = upper limit of velocity in meters per second dtb(ft) = depth to bottom of layer in feet v(ft/s) = upper limit of velocity in meters per second vl(ft/s) = upper limit of velocity in feet v(ft/s) = velocity of layer in feet v(ft/s) = upper limit of velocity in feet per second vl(ft/s) = upper limit of velocity in feet per second vl(ft/s) = upper limit of velocity in feet per second</pre>
↑ 202 202 202 209 466 439 683 683	3388 3988 493 557 705 705	d(m) d(ft) tsl(s) twrt(s) wavg(m/, sig rsdl(se dtb(m) thk(m) v(m/s) vl(m/s) vl(m/s) vl(m/s) vl(m/s) vl(m/s) vl(m/s)
thk (m) 2.0 3.0 6.0 6.0 5.0 5.0 5.0		
dtb (m) 2.0 5.0 11.0 19.5 24.5	9868.55.0 94.000.5.000.5	
sig rsdl(sec) 1 -0.0001 1 -0.0003 1 -0.0005 1 -0.0003 1 -0.0004	0.0000	0.0000000000000000000000000000000000000
7g(m/s) 256 223 260 294 308	00000000000000000000000000000000000000	368 370 371 374 375 376 376 407 407 408 411 411 411 411 411 411 411 411 411
ts1(s) tvrt(s) vavg(m/s) sig rsd1(sec) 0.0174 0.0078 256 1 -0.0001 0.0272 0.0202 223 1 0.0003 0.0300 0.0270 260 1 -0.0005 0.0344 0.0323 294 1 -0.0003 0.0412 0.0390 308 1 0.0003		0.1084 0.1073 0.1140 0.1136 0.1210 0.1139 0.1272 0.1262 0.1326 0.1325 0.1444 0.1450 0.1544 0.1503 0.1556 0.1554 0.1660 0.1655 0.1660 0.1655 0.1672 0.1736 0.1888 0.1738 0.1928 0.1738 0.1928 0.1738 0.1928 0.1938 0.2049 0.2049 0.2084 0.2084 0.2128 0.2126
d(ft) 6.6 14.8 23.0 31.2 47.4		123.6 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
d(m) d 2.0 4.5 7.0 9.5 12.0		6.4444676664666666666666666666666666666

TABLE A-6. P-wave arrival times and velocity summaries.

:	u(ft/s) 1423	1875	2463	4322	3502	5799	6344									val	e.	er							Si													
:	dtb(it) thk(it) v(it/s) v1(it/s) vu(it/s) 6.6 6.6 1361 1305 1423	1631	2195	3972	3260	2605	6035								source	to receiver, along a slant path). For the arrival	times used in the S-wave model, the times are the	average of picks from traces obtained from hammer	grees.	model	vavg(m/s) = average velocity from the surface to each depth,		o the		rsdl(sec)=residual(observed- fittedtraveltime), in secs				second	limits)	second				cond	cond		
:	v(ft/s)t 1361	1745	2321	4139	3377	2700	6186								nds (from	h). For	L, the tir	btained 1	y 180 de	from the	faceto es	rt(s)	malizedto	sks	aveltim	ters		r second	ersper s	elocity]	ersper s	et		second	t per se	t per se		
:	thk(ft)	8.6	19.7	44.3	34.4	108.3	86.9								in secor	slant pat	ave model	traceso	rectionb	computed	the suri	d(m)/tv	tionnor	best pic	fitted tr	yer in me	meters	eters pe	tyin met	tionof v	tyin met	yer in fe	feet	feet per	tyin fee	tyin fee		
:	atb(ft)	16.4	36.1	80.4	114.8	223.1	310.0						ers		ivaltime	alonga	the S-w	icks from	ing in di	veltime (city from	wg vel=	arddevia	iationof	served-	com of lay	layer in	ayer in 1	f veloci	explana	f veloci	comof lay	layer in	ayer in	f veloci	of veloci		
	vu(m/s) 434	572	751	1317	1067	1767	1934						= depth in meters	= depth in feet	= observedarrivaltime in seconds (from source	eceiver,	es used in	rage of pi	blows differing in direction by 180 degrees	= vertical travel time computed from the model	rage velo	computed as avg vel = d(m)/tvrt(s)	= sigma, standard deviation normalized to the	standard deviation of best picks	idual (ob:	= depth to bottom of layer in meters	= thicknessof layer in meters	 velocity of layer in meters per second 	 lower limit of velocity in meters per second 	see text for explanationof velocity limits	 upper limit of velocity in meters per second 	= depth to bottom of layer in feet	thicknessof layer in feet	velocity of layer in feet per second	 lower limit of velocity in feet per second 	 upper limit of velocity in feet per second 		
:	V(m/s) VI(m/s) VU(m/s) 415 398 434	497	699	1211	994	1708	1839					tion:	= dept				tim	ave:	blot		/s)=ave	iii oo	= sign	sta	ec)=res					_	_	_	II	п) = ddn = (s		
	∇(m/s) 415	532	708	1262	1029	1737	1885					Explanation:	(a (b	d(ft)	tsl(s)					tvrt(s)	vavg(m		sig		rsdl(s	dtb(m)	thk (m)	V(m/s)	V1(m/s)		vu(m/s)	dtb(ft)	thk (ft)	v(ft/s)	vl(ft/s)	vu(ft/s)		
:	tbk (B)	9.0	9.0	13.5	10.5	33.0	26.5																															
	atb (#)	2.0	11.0	24.5	35.0	98.0	94.5																															
:	sig rsdl(sec)	-0.0005	0.0008	0.000	0.0003	0.0004	-0.0008	-0.0009	-0.0006	0.0004	0.0004	0.0010	0.0004	-0.0004	-0.0002	0.0002	0.000	-0.0005	-0.0001	-0.0001	-0.0002	0.0002	0.000	-0.0002	0.0001	0.0005	-0.0003	0.0007	0.000	-0.0002	-0.0003	-0.0004	0.0001	-0.0001	0.0004	-0.0003	0.0002	0.0001
	. 618 -	ı –ı	-	-	-	-	-	-	-	-	-	-	-	٦	-	-	-	-	٦	٦	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Ω.	473	527	265	809	899	718	260	964	827	842	855	867	877	903	931	957	982	1006	1027	1048	1067	1086	1103	1120	1135	1150	1166	1181	1196	1211	1224	1238	1250	1262	1274	1286	1296
	cvrt(s) v 0.0048	0.0095	0.0133	0.0168	0.0197	0.0217	0.0237	0.0257	0.0276	0.0296	0.0321		0.0369	0.0393	0.0410	0.0424	0.0439	0.0453	0.0467	0.0482	0.0496				_		0.0583	0.0596	0.0610	0.0623						0.0702	0.0716	0.0729
:	ts1(s) 0.0108	0.0122	0.0160	0.0182	0.0210	0.0228	0.0234	0.0252	0.0274	0.0304	0.0328	0.0358	0.0376	0.0392	0.0410	0.0428	0.0440	0.0450	0.0468	0.0482	0.0496	0.0514	0.0526	0.0538	0.0556	0.0574	0.0580	0.0604	0.0610	0.0622	0.0634	0.0646	0.0664	0.0676	0.0694	0.0700	0.0718	0.0730
:	a(#£	14.8	23.0	31.2	39.4	47.6	55.8	64.0	72.2	80.4	9.88	8.96	105.0	113.2	121.4	129.6	137.8	146.0	154.2	162.4	170.6	178.8	187.0	195.2	203.4	211.6	219.8	228.0	236.2	244.4	252.6	260.8	269.0	277.2	285.4	293.6	301.8	310.0
:	g (g)	4.5	7.0	9.5	12.0	14.5	17.0	19.5	22.0	24.5	27.0	29.5	32.0	34.5	37.0	39.8	42.0	44.5	47.0	49.5	52.0	54.5	57.0			64.5									87.0	89.5	92.0	94.5

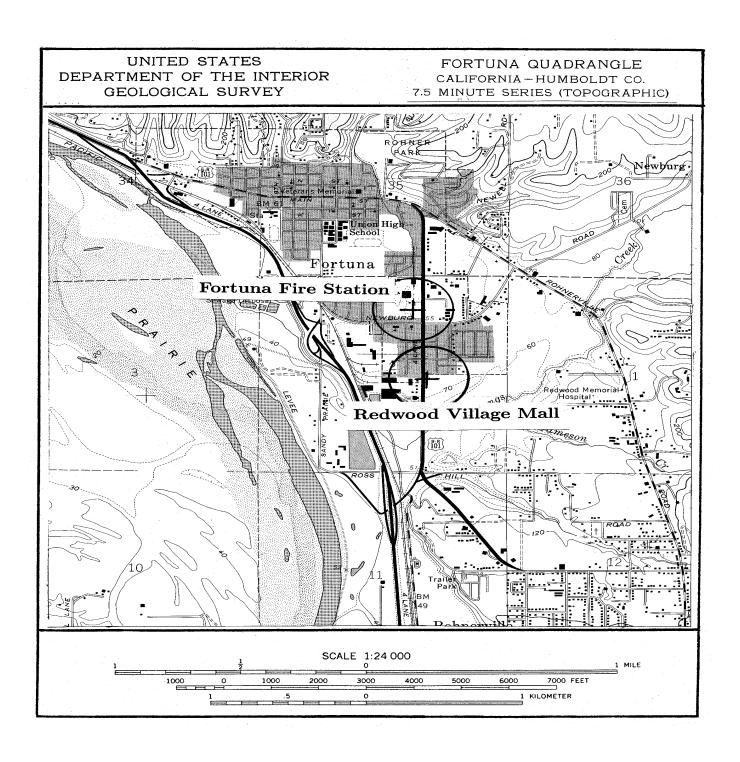


Figure A-16. Site location map for the borehole at Redwood Village Mall. The accelerograph is located approximately 10 meters from the borehole.

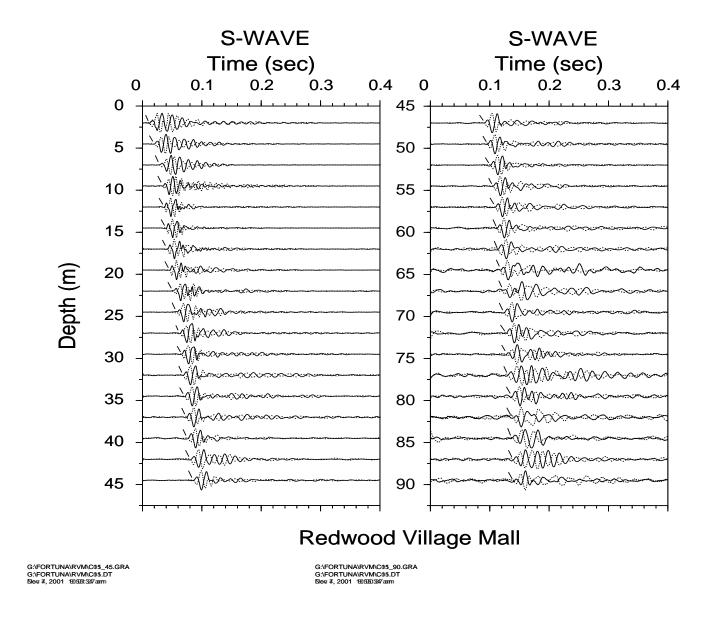


Figure A-17. Horizontal component record section (from impacts in opposite directions) superimposed for identification of S-wave onset. Approximate S-wave time picks are indicated by the hatch marks.

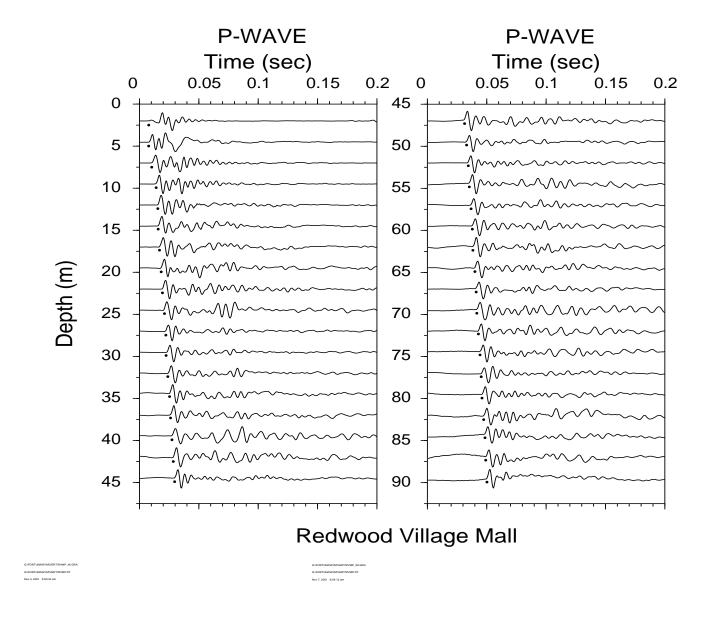


Figure A-18. Vertical component record section. Approximate P-wave arrivals are indicated by the dots.

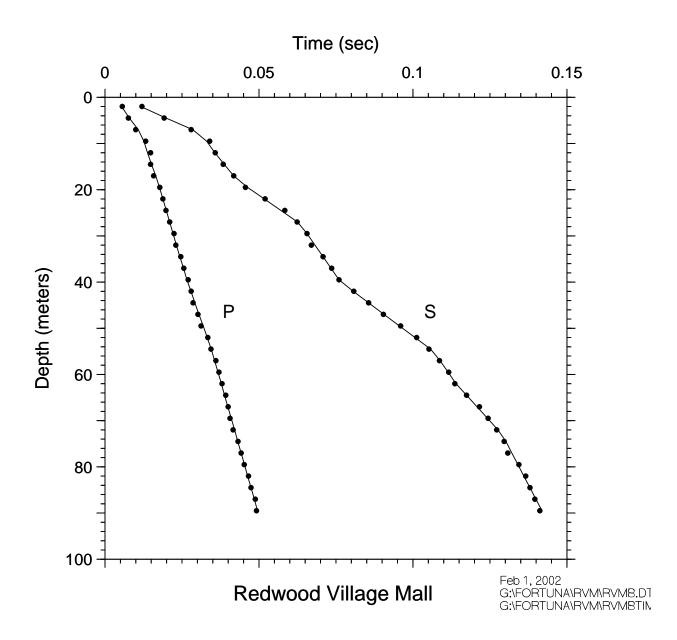


Figure A-19. Time-depth graph of P-wave and S-wave picks. Line segments are straightline interpolations of model predictions at the observation depths. The times for zero depth, not shown, are given by the horizontal offset (hoffset) divided by the velocity in the uppermost layer (see accompanying tables of velocities for specific values).

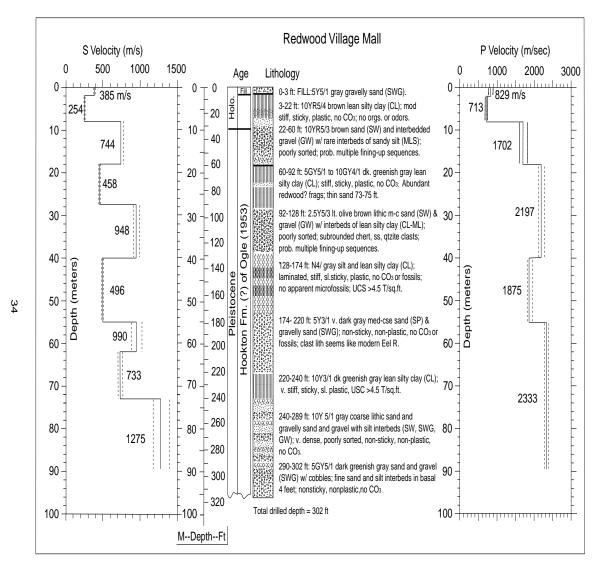


Figure A-20. S- and P-wave velocity profiles with lithology. Dashed lines represent plus and minus one standard deviation of velocities.

TABLE A-7. S-wave arrival times and velocity summaries.

<pre>Coordinates: 40.58472 -124.14538 Hole_Code: 311 DRIUMA\RVH\RVH\RVH\RVH\RVH\RVH\RVH\RVH\RVH\RVH</pre>	dtb(m) thk(m) v(m/s) v1(m/s) v1(m/s) dtb(ft) thk(ft) v(ft/s) v1(ft/s) v1(ft/s) 2 0 2 0 385 369 402 6.6 6 6 6 1262 1210 1319 2 0 6 0 385 369 402 6.6 6 6 6 1262 1210 1319 2 0 6 0 0 5 34 248 259 2562 19.7 828 2440 2365 851 818 0 10.0 744 912 778 951 32.8 2440 2365 852 2 0 5 0 6 0 0 5 2 4 2 4 2 4 2 2 2 1 3 2 8 2 4 4 6 4 7 0 9 2 2 1 2 2 1 5 3 1 4 6 4 1 5 3 2 3 2 3 2 2 2 2 2 1 2 2 2 2 1 2
<pre>Location:RedwoodVillageMall: S</pre>	d(m) d(ft) tsl(s) tvrt(s) vavg(m/s) sig rsdl(sec) 2.0 6.6 0.0120 0.0052 385 1 0.0004 4.5 14.8 0.0120 0.0052 385 1 0.0004 4.5 14.8 0.0120 0.0252 281 1 0.0005 3.5 31.2 0.0058 0.0342 281 1 0.0001 12.0 39.4 0.0358 0.0342 358 1 0.0001 14.5 47.6 0.0349 0.0376 386 1 0.0001 14.5 47.6 0.0384 0.0376 386 1 0.0001 19.5 64.0 0.0456 0.0455 428 1 0.0003 24.5 80.4 0.0584 0.0510 434 1 0.0003 24.5 86.8 0.0656 0.0510 434 1 0.0003 32.0 105.0 0.0570 0.0570 434 1 0.0001 33.5 113.2 0.0708 0.0704 439 1 0.0002 43.5 113.2 0.0708 0.0704 439 1 0.0002 44.5 146.0 0.0566 0.051 453 1 0.0002 42.0 137.8 0.0708 0.0704 439 1 0.0002 44.5 146.0 0.0856 0.0853 522 1 0.0000 42.0 137.8 0.0006 0.0737 522 1 0.0002 42.0 137.8 0.0006 0.055 522 1 0.0006 64.5 178.8 0.1052 0.1004 518 1 0.0005 64.5 178.8 0.1052 0.1004 518 1 0.0005 64.5 178.8 0.1052 0.1004 518 519 1 0.0006 67.0 219.8 0.112 535 1 0.0006 67.0 219.8 0.1216 0.1206 555 1 0.0006 67.0 236.2 0.1204 0.133 544 0.1206 0.1308 0.1319 584 3 0.0006 67.0 236.2 0.1344 0.1206 0.1339 524 1 0.0003 82.0 236.2 0.1344 0.1206 0.1339 524 1 0.0003 82.0 236.2 0.1344 0.1206 0.1339 524 1 0.0003 82.0 256.0 0.1344 0.1339 544 1 0.0003 82.0 256.0 0.1344 0.1339 544 1 0.0003 82.0 256.0 0.1344 0.1339 544 1 0.0003 82.0 256.0 0.1344 0.1339 544 1 0.0003 82.0 256.0 0.1344 0.1339 544 1 0.0003 82.0 256.0 0.1344 0.1339 544 1 0.0003 82.0 256.0 0.1344 0.1339 544 1 0.0003 82.0 256.0 0.1344 0.1339 544 1 0.0003 82.0 256.0 0.1344 0.1339 544 1 0.0003 82.0 256.0 0.1344 0.1339 545 1 0.0003 82.0 256.0 0.1344 0.1339 545 1 0.0003 82.0 256.0 0.1344 0.1339 545 1 0.0003 82.0 256.0 0.1344 0.1339 545 1 0.0003 82.0 256.0 0.1346 0.1339 545 1 0.0003 82.0 256.0 0.1346 0.1339 545 1 0.0003 82.0 0.1346 0.1339 545 1 0.0003 82.0 0.1346 0.1339 545 1 0.0003 82.0 0.1346 0.1339 545 1 0.0003 82.0 0.1346 0.1339 545 1 0.0003 82.0 0.1346 0.1339 545 1 0.0003 82.0 0.1346 0.1339 545 1 0.0003 82.0 0.1346 0.1339 545 1 0.0003 82.0 0.1346 0.1339 545 1 0.0003 82.0 0.1341 0.1310 0.1310 0.1310 0.1310 0.1310 0.1310 0.1310 0.1310 0.1310 0.1310 0.1310 0.1310 0.1310 0.1310 0.1310 0.1

TABLE A-8. P-wave arrival times and velocity summaries.

<pre>Coordinates: 40.58472 -124.14538</pre>	### The control of th
Redwood Village Mall: P 4.00 travel-timefile: G:\F(
	10.0056 0.0024 msg rsdl(sec.) 0.0056 0.0024 0.0039 0.0032 0.00032 0.00032 0.00032 0.00032 0.00032 0.00032 0.00032 0.00032 0.00032 0.00032 0.00032 0.00132 0.0117 811 1 0.00003 0.0148 0.0132 0.0146 990 1 -0.00003 0.0158 0.0161 1025 1 0.00003 0.0188 0.0184 1122 1 0.00003 0.0230 0.0231 1287 1 0.00003 0.0230 0.0231 1287 1 0.00003 0.0230 0.0231 1287 1 0.00003 0.0230 0.0231 1287 1 0.00003 0.0230 0.0231 1287 1 0.00003 0.0230 0.0231 1287 1 0.00003 0.0230 0.0231 1573 1 0.00003 0.0230 0.0231 1573 1 0.00003 0.0334 0.0334 0.0331 1570 1 0.0003 0.0334 0.0334 1653 1 0.0003 0.0330 0.0336 1663 1 0.0003 0.0330 0.0339 1681 1 0.0003 0.0432 0.0432 1734 1 0.0003 0.0432 0.0431 1734 1 0.0003 0.0442 0.0443 1734 1 0.0003 0.0444 0.0444 1734 1 0.0003 0.0445 0.0444 1734 1 0.0003 0.0444 0.0444 1734 1 0.0003 0.0445 0.0444 1734 1 0.0003 0.0445 0.0444 1734 1 0.0003 0.0445 0.0444 1734 1 0.0003 0.0445 0.0444 1734 1 0.0003 0.0445 0.0444 1734 1 0.0003 0.0445 0.0444 1734 1 0.0003 0.0445 0.0444 1734 1 0.0003 0.0445 0.0444 1734 1 0.0003 0.0445 0.0444 1734 1 0.0003 0.0445 0.0444 1734 1 0.0003 0.0445 0.0445 1808 1 0.0003 0.0445 0.0445 1808 1 0.0003 0.0445 0.0445 1808 1 0.0003 0.0445 0.0445 1808 1 0.0003 0.0445 0.0445 1808 1 0.0003 0.0445 0.0445 1808 1 0.0003 0.0445 0.0445 1808 1 0.0003 0.0445 0.0445 1808 1 0.0003 0.0445 0.0445 1808 1 0.0003 0.0445 0.0445 1808 1 0.0003 0.0445 0.0445 1808 1 0.0003 0.0445 0.0445 1808 1 0.0003 0.0445 0.0445 1808 1 0.0003 0.0445 0.0445 1808 1 0.0003 0.0445 0.0445 1808 1 0.0003 0.0445 0.0445 1808 1 0.0003 0.0445 0.0445 0.0444 1794 1 0.0003 0.0445 0.0444 1794 1 0.0003 0.0445 0.0444 1794 1 0.0003 0.0445 0.0444 1794 1 0.0003 0.0445 0.0444 1794 1 0.0003 0.0445 0.0444 1794 1 0.0003 0.0445 0.0445 0.0444 1794 1 0.0003 0.0445 0.0444 1794 1 0.0003 0.0445 0.0444 1794 1 0.0003 0.0445 0.0444 1794 1 0.0003 0.0444 1794 1 0.0003 0.0444 1794 1 0.0003 0.0444 1794 1 0.0003 0.0444 1794 1 0.0003 0.0444 1794 1 0.0003 0.0444 1794 1 0.0003 0.0444 1794 1 0.0003 0.0444 1794 1 0.0003 0.0444 1794 1 0.0003 0.0444 1794 1 0.0003 0.0444 1794 1 0.0003 0.044
	tvrt(s) v (s) v (s
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Location: hoffset =	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

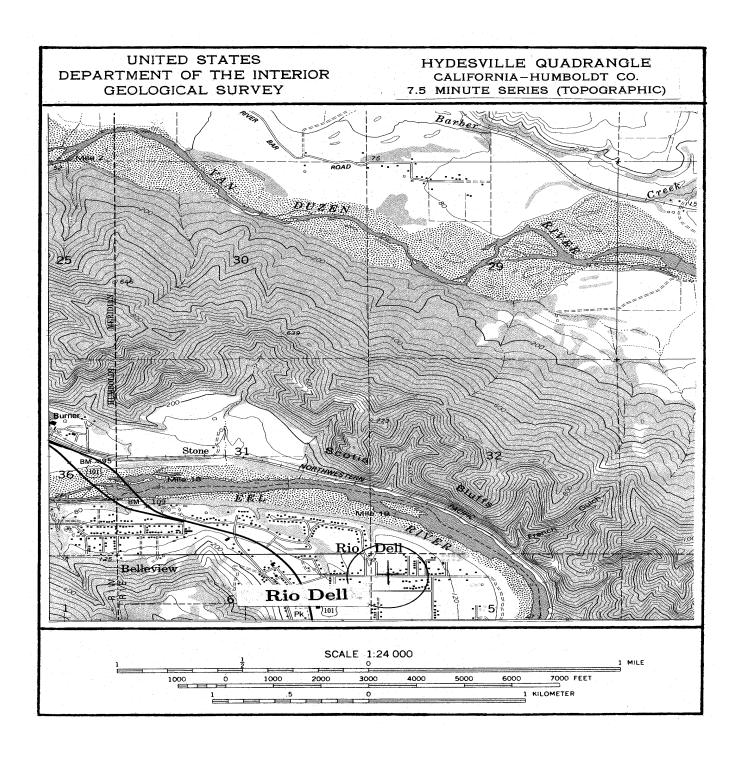


Figure A-21. Site location map for the borehole at Rio Dell. The highway (US 101) has been rerouted and is close to the borehole. The accelerograph is located approximately 10 meters from the borehole.

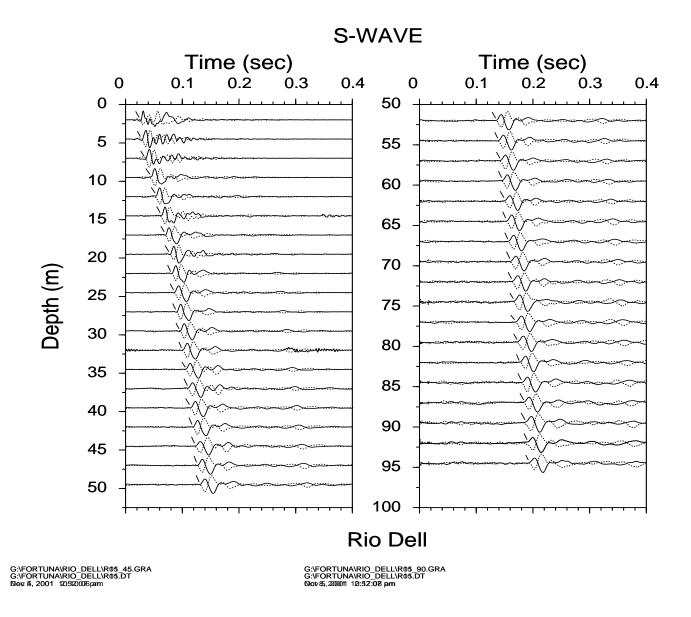


Figure A-22. Horizontal component record section (from impacts in opposite directions) superimposed for identification of S-wave onset. Approximate S-wave time picks are indicated by the hatch marks.

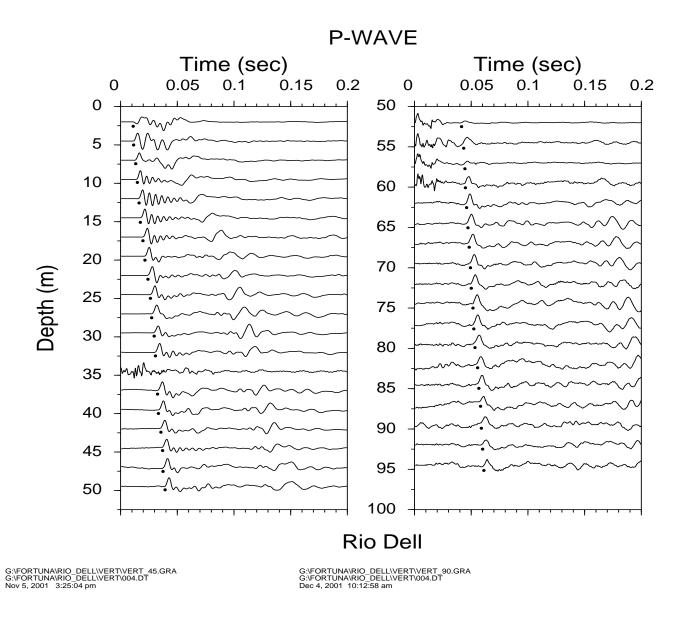


Figure A-23. Vertical component record section. Approximate P-wave arrivals are indicated by the dots.

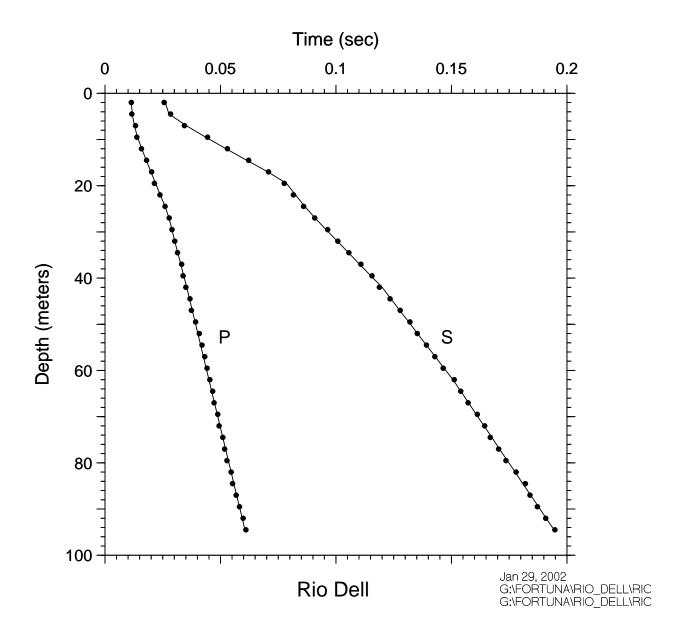


Figure A-24. Time-depth graph of P-wave and S-wave picks. Line segments are straightline interpolations of model predictions at the observation depths. The times for zero depth, not shown, are given by the horizontal offset (hoffset) divided by the velocity in the uppermost layer (see accompanying tables of velocities for specific values).

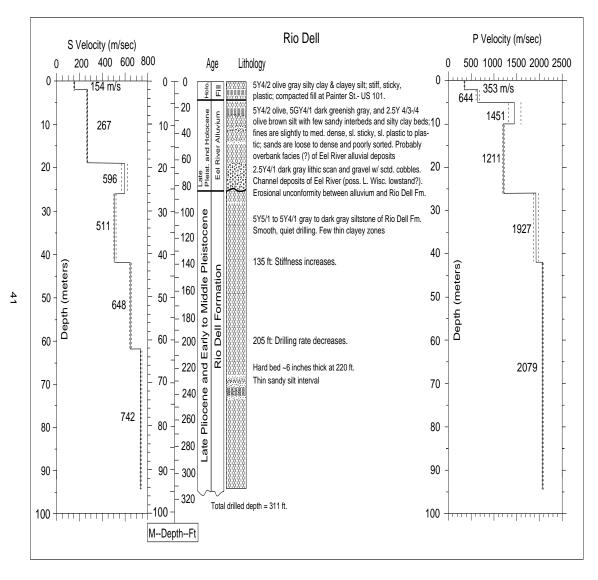


Figure A-25. S- and P-wave velocity profiles with lithology. Dashed lines represent plus and minus one standard deviation of velocities.

TABLE A-9. S-wave arrival times and velocity summaries.

312	154 151 m/s) vu(m/s) dtb(ft) thk(ft) v(ft/s) vu(ft/s) vu(ft/s) 154 151 158 6.6 6.6 506 496 517 265 269 62.3 55.8 877 870 884 596 570 624 85.3 52.8 1678 1869 2048 511 503 520 137.8 52.5 1678 1650 1707 648 639 657 203.4 65.6 2126 2096 2157 742 734 750 310.0 106.6 2434 2409 2460 xplanation: d(m) = depth in meters d(ft) = depth in feet to receiver, along a lant path). For the arrival times used in the S-wave model, the times are the average of picks from traces obtained from hammer blows differingin directionby 180 degrees. to receiver, along a slant path). For the arrival times used in the S-wave model, the times are the average of picks from traces obtained from hammer blows differingin directionby 180 degrees. to receiver and ardeviation of second depth, computed as avg vel = d(m)/tvrt(s) standardeviation of best picks standardeviation of best picks to sigma, standardeviation feet picks to be control layer in meters per second (see text for explanation of velocity limits) to a upper limit of velocity in meters per second (see text for explanation of velocity limits) to a cupper limit of velocity in feet per second (see text for explanation of velocity limits) to thickness of layer in feet to the depth to bottom of layer in feet to the depth to bottom of layer in feet to thickness of layer in feet per second (see text for explanation of velocity limits) to thickness of layer in feet per second (see text for explanation of velocity limits) to thickness of layer in feet per second (see text for explanation of velocity limits) to thickness of layer in feet per second (see text for explanation of velocity limits) to see the control limit of velocity in feet per second to the second second to the second seco
124.09914 Hole_Code: 6	15.0 (m) thk (m) v(m/s) v1(m/s) v1(m/s) 2.0 2.0 154 151 158 19.0 17.0 267 265 269 26.0 7.0 596 570 624 42.0 16.0 511 503 520 62.0 20.0 648 639 657 94.5 32.5 742 734 750 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10
1: S Coordinates: 40.50334 - travel-timefile: G:\FORTUMA\RIO_DEL\RIOS.TT nlayers = nlayers =	tel(s) tyrt(s) tyryg(m/s) sig rsdl(sec) of 0.0256 0.0130
Location: Rio Dell: S hoffset = 3.50 travel-timefi	d(m) d(ft) tsl(s) total 2.0 6.6 0.0256 0.0130 4.5 14.8 0.0244 0.0214 7.0 23.0 0.0344 0.0317 12.0 23.0 0.0344 0.0317 12.0 23.0 0.0344 0.0317 12.0 23.0 0.0344 0.0317 12.0 23.0 0.0344 0.0311 12.0 47.0 0.0622 0.0594 11.0 55.8 0.0708 0.0692 12.0 72.0 0.0859 0.0964 22.0 72.2 0.0816 0.0859 22.0 72.2 0.0816 0.0859 22.0 10.0 0.0776 0.0776 22.0 10.0 0.0622 0.0593 22.0 10.0 0.0620 0.0859 22.0 10.0 0.0776 0.0776 22.0 10.0 0.0622 0.0693 22.0 10.0

TABLE A-10. P-wave arrival times and velocity summaries.

ole_Code: 312	### ### #### #########################
19914 1	0.00 (m/s) v1(m/s) 353 0.44 60 0.44 60 1211 112 1212 113 1927 206 0.079 206 0.079 206 0.079 206 0.079 206 0.079 206 0.079 206 0.079 206 0.079 206 0.079 206 0.070 206
1-124.(TT	2. (2. (2. (2. (2. (2. (2. (2. (2. (2. (
10.50334 -] L\RIOP.TT nlayers =	atb 2.0 2.0 10.0 10.0 442.0 94.5
Coordinates: 40.50334-124.09914 Hole_Code: ORTUMA\RIO_DEL\RIOP.TT nlayers = 6	10.1(s) tytt(s) tyayg(m/s) sig xsdl(sec) 0.0114 0.0057 353 0.00000 0.0115 0.0095 471 1 0.00000 0.0132 0.0134 708 1 0.00003 0.0138 0.0134 708 1 0.00001 0.0202 0.0136 870 1 0.00001 0.0214 0.0216 902 1 0.00001 0.0238 0.0237 929 1 0.00001 0.0238 0.0237 929 1 0.00001 0.0238 0.0237 929 1 0.00001 0.0238 0.0237 929 1 0.00001 0.0238 0.0237 929 1 0.00001 0.0338 0.0237 929 1 0.00001 0.0338 0.0340 1162 1 0.00004 0.0358 0.0353 1132 1 0.00004 0.0358 0.0353 1220 1 0.00004 0.0358 0.0353 1220 1 0.00004 0.0358 0.0353 1230 1 0.00004 0.0358 0.0353 1240 1 0.00004 0.0458 0.0451 1341 3 0.0006 0.0458 0.0451 1341 1 0.00004 0.0458 0.0451 1341 1 0.00004 0.0458 0.0451 1341 1 0.00004 0.0558 0.0551 1473 1 0.00004 0.0558 0.0551 1473 1 0.00004 0.0558 0.0553 1491 1 0.00004 0.0558 0.0553 1551 1 0.00004 0.0558 0.0553 1551 1 0.00004 0.0598 0.0593 1551 1 0.00004
Coo \FORT	\$000000000000000000000000000000000000
Location: Rio Dell: P Coordinates: 40.50334 - hoffset = 3.50 travel-timefile: G:\FORTUMA\RIO_DELL\RIOP.IT nlayers =	7879 (W/s) (1979
	virt(s) v virt(s) v 0.0055 0.0134 0.0136 0.0136 0.0275 0.0275 0.0275 0.0275 0.0276 0.0277 0.0277 0.0277 0.0377 0.0443 0.0443 0.0443 0.0443 0.0443 0.0443 0.0443 0.0455 0.0455 0.0553
	15.1(s) t 0.0114) t 0.0114) t 0.0116 0.0132 0.0138 0.0278 0.0278 0.0278 0.0338 0.0337 0.0337 0.0432 0.0434 0.0432 0.0444 0.0434 0.0444 0.0438 0.0458 0.0558 0.0558 0.0558
	a (ft. 2010) 6 4 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Location:] hoffset =	$\begin{array}{c} 3_{1} \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ $

APPENDIX—B

Poisson's Ratios

Table B-1. Poisson's ratios calculated from the P- and S-wave velocity models determined for the College of the Redwoods site.

P wave - 2.00000 14.0000 94.6000) 34:) 55:	l, for file: 3.000 9.000 20.00	CRWP.VEL			
S wave - 2.00000 6.00000 27.0000 35.0000 49.5000 72.0000 89.5000	240 360 280 51 350 380 460	L, for file: 0.000 9.000 1.000 6.000 5.000 9.000 3.000	CRWS_RE.VEL			
d2bot_r	d2bot_s	d2bot	thick	pvel	svel	pssnrat
2.000E+00	2.000E+00	2.000E+00	2.000E+00	3.480E+02	2.400E+02	0.05
1.400E+01	6.000E+00	6.000E+00	4.000E+00	5.590E+02	3.690 E+ 02	0.11
1.400E+01	2.700E+01	1.400E+01	8.000E+00	5.590E+02	2.810E+02	0.33
9.460E+01	2.700E+01	2.700E+01	1.300E+01	1.520E+03	2.810E+02	0.48
9.460E+01	3.500E+01	3.500E+01	8.000E+00	1.520E+03	5.160E+02	0.43
9.460E+01	4.950E+01	4.950E+01	1.450E+01	1.520E+03	3.550E+02	0.47
9.460E+01	7.200E+01	7.200E+01	2.250E+01	1.520E+03	3.890E+02	0.46
9.460E+01	8.950E+01	8.950E+01	1.750E+01	1.520E+03	4.630E+02	0.45
9.460E+01	9.450E+01	9.450E+01	5.000E+00	1.520E+03	5.130E+02	0.44

Table B-2. Poisson's ratios calculated from the P- and S-wave velocity models determined for the Fortuna Fire Station site.

P	wave - 3.70000 57.0000 97.0000	42	1, for 1.000 881.00 749.00	file:	FFSP.VEL			
ន	wave - 3.70000 10.0000 19.5000 75.6000 97.0000	17 34 43 82	1, for 72.000 46.000 89.000 89.000	file:	ffs2s.VEL			
	d2bot p	d2bot s	3	d2bot	thick	pvel	svel	pssnrat
З.	700E+00	3.700E+00	3.70	0E+00	3.700E+00	4.210E+02	1.720E+02	0.40
5.	700E+01	1.000E+01	1.00	0E+01	6.300E+00	2.381E+03	3.460E+02	0.49
	700E+01	1.950E+01		0E+01	9.500E+00	2.381E+03	4.390E+02	0.48
	700E+01	7.560E+01		0E+01	3.750E+01	2.381E+03	8.290E+02	0.43
	700E+01	7.560E+01		OE+01	1.860E+01	1.749E+03	8.290E+02	0.36
9.	700E+01	9.700E+01	9.70	0E+01	2.140E+01	1.749E+03	7.300E+02	0.39

Table B-3. Poisson's ratios calculated from the P- and S-wave velocity models determined for the Loleta Fire Station site.

P wave - 2.00000 5.00000 11.0000 24.5000 35.0000 68.0000 94.5000	d2bot, pvel, 415. 532. 708. 1262 1029 1737 1885	.000 .000 .000 2.00 9.00 7.00	LFSP.VEL			
S wave - 2.00000 5.00000 11.0000 19.5000 24.5000 35.0000 55.0000 68.0000 82.0000	d2bot, svel, 256. 202. 466. 289. 739. 432. 398. 493. 557.	.000 .000 .000 .000 .000 .000	LFSS.VEL			
d2bot_p 2.000E+00 5.000E+00 1.100E+01 2.450E+01 3.500E+01 6.800E+01 9.450E+01 9.450E+01	d2bot_s 2.000e+00 5.000e+00 1.100e+01 1.950e+01 2.450e+01 3.500e+01 5.500e+01 6.800e+01 9.450e+01	d2bot 2.000E+00 5.000E+00 1.100E+01 1.950E+01 2.450E+01 3.500E+01 5.500E+01 6.800E+01 9.450E+01	thick 2.000E+00 3.000E+00 6.000E+00 8.500E+00 5.000E+01 2.000E+01 1.300E+01 1.400E+01 1.250E+01	pvel 4.150E+02 5.320E+02 7.080E+02 1.262E+03 1.262E+03 1.029E+03 1.737E+03 1.737E+03 1.885E+03	svel 2.560E+02 2.020E+02 4.660E+02 2.890E+02 7.390E+02 4.320E+02 3.980E+02 4.930E+02 5.570E+02 7.050E+02	pssnrat

Table B-4. Poisson's ratios calculated from the P- and S-wave velocity models determined for the Redwood Village Mall site.

8.0 18. 40. 55.	e – 0000 0000 0000 0000 0000 5000		el, fo 329.000 713.000 1702.00 2197.00 1875.00	r file:	RVMP.VEL			
8.0 18. 27. 40. 55. 62. 73.	6 - 0000 0000 5000 0000 0000 0000 0000 5000	2 5 4 9 7	el, fo 885.000 744.000 744.000 948.000 948.000 950.000 733.000	r file:	RVMS.VEL			
d2b	ot_p	d2bot_	_s	d2bot	thick	pvel	svel	pssnrat
2.000	E+00	2.000 E+ 0		000E+00	2.000 E+ 00	8.290 E+ 02	3.850E+02	0.36
8.000		8.000E+0		000E+00	6.000E+00	7.130E+02	2.540E+02	0.43
1.800		1.800E+0		800E+01	1.000E+01	1.702E+03	7.440E+02	0.38
4.000		2.750E+0		750E+01	9.500E+00	2.197E+03	4.580E+02	0.48
4.000		4.000E+0		000E+01	1.250E+01	2.197E+03	9.480E+02	0.39
5.500		5.500E+0		500E+01	1.500E+01	1.875E+03	4.960E+02	0.46
8.950		6.200E+0		200E+01	7.000E+00	2.333E+03	9.500E+02	0.40
8.950		7.300E+0		300E+01	1.100E+01	2.333E+03	7.330E+02	0.45
8.950	5+OT	8.950E+0	ıı 8.	950E+01	1.650E+01	2.333E+O3	1.275E+03	0.29

Table B-5. Poisson's ratio calculated from P- and S-wave velocity models determined for the Rio Dell site.

P	wave - 2.00000 5.00000 10.0000 26.0000 42.0000 94.5000	d2bot,	pvel, 353.0 644.0 1451. 1211. 1927. 2079.	00 00 00 00 00	file:	RIOP.VEL			
ន	wave - 2.00000 19.0000 26.0000 42.0000 62.0000 94.5000	d2bot,	svel, 154.0 267.0 596.0 511.0 648.0 742.0	00 00 00 00 00	file:	RIOS.VEL			
5. 1. 2. 2. 4.	d2bot_p 000E+00 000E+00 000E+01 600E+01 600E+01 200E+01 450E+01	d2k 2.000 1.900 1.900 2.600 4.200 6.200 9.450	E+01 E+01 E+01 E+01 E+01 E+01	5.00 1.00 1.90 2.60 4.20	d2bot OE+OO OE+OO OE+O1 OE+O1 OE+O1 OE+O1 OE+O1	thick 2.000E+00 3.000E+00 5.000E+00 9.000E+00 7.000E+00 1.600E+01 2.000E+01 3.250E+01	pvel 3.530E+02 6.440E+02 1.451E+03 1.211E+03 1.211E+03 1.927E+03 2.079E+03	svel 1.540E+02 2.670E+02 2.670E+02 2.670E+02 5.960E+02 5.110E+02 6.480E+02 7.420E+02	pssnrat 0.38 0.40 0.48 0.47 0.34 0.46 0.45 0.43