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Although this is the first review on this topic to appear in a
quadrennial report, the roots of strong-motion seismology extend
back to at least 1932, when far-sighted engineers in the Seismological
Field Survey of the U. 8. Coast and Geodetic Survey installed rugged,
fieldworthy instruments designed to make on-scale recordings of
large earthquakes (Carder, 1984); these instruments are called ac-
celerographs, for their output closely mimics ground acceleration
(Hudson,1979). The original instruments and their offspring have
provided a wealth of information about ground motions of direct
use to engineers. Due in large part to the continued devotion of the
Seismological Field Survey (now part of the Branch of Engineering
Seismology and Geology at the U. S. Geological Survey), the num-
ber of recordings has increased substantially, particularly in the last
two decades, and multiple recordings of a few California earthquakes
have provided the data necessary to begin to unravel the complexities
of the ground motions and to predict these motions on an empirical
basis. Although seismologists used accelerograph records in studies
of earthquake energy and ground motion attenuation as long ago
as 1942 (Gutenberg and Richter, 1942, 1956), widespread seismologi-
cal use of the records began with Aki’s (1968) analysis of the 1966
Parkfield earthquake. The field of strong-motion seismology has been
especially vigorous since 1971, when the San Fernando, California,
earthquake produced close to 100 on-scale records of the ground mo-
tion within 150 km of the faulting. The rapid growth of the field
in the last decade was helped by the social concern with earthquake
hazard reduction and by regulatory processes intended to protect the
environment and the population from the failure of such engineered
structures as nuclear power plants and large dams.

This paper is not subject to U. S. copyright. Published in 1983
by the American Geophysical Union.

Paper number 3R0397.

A major task of strong-motion seismology is the study and
prediction of potentially damaging ground shaking; practically speak-
ing, this means predictions of ground motion within several tens
of kilometers from earthquakes with moments larger than about
3 x 10?® dyne-cm. To do this requires a, truly interdisciplinary
approach, with contributions from both seismologists and engineers
working on subjects as diverse as theoretical models of crack
propagation and experimental nonlinear soil behavior. Because so
many different areas of research pertain to strong-motion seis-
mology, this review has been difficult to organize and has resulted
in a voluminous bibliography, of which only a fraction of the
papers will be specifically cited. The paper begins with a review
of data acquisition and processing, followed by studies based on
empirical analyses of strong-motion data. These include inves-
tigations of the character of strong motion, such as the cor-
relation between components and the prediction from regression
studies of strong ground motion as a function of source size and dis-
tance from source to site. After this will be a number of topics related
to the prediction of strong ground motion, following the usual order
of source, propagation path, and site response. Consideration of these
topics forms the bulk of the review. The final section deals briefly
with the important and difficult problem of prediction of ground
motion in the central and eastern United States, where few record-
ings of motions from damaging earthquakes are available. Because
the emphasis in this review is on the prediction of strong ground mo-
tion, references to modeling studies using accelerograms from specific
earthquakes are not given in a separate section but are distributed
throughout the text when their conclusions are relevant to the topic
under consideration. In fact, most of them are collected in the sub-
section of source studies dealing with estimation of source properties.

Because my charge was to review the field from 1979—1982, I
have ignored the many contributions made previously ( the bulk of
which were made between 1971 and 1979). An excellent guide to the
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earlier literature ( and the current literature as well ) is the Abstract
Journal of Earthquake Engineering (R. C. Denton, ed.), published by
the Earthquake Engineering Center of the University of California
at Berkeley.

This review has ignored seismological work related to the es-
timation of rupture length, magnitude, and recurrence times for fu-
ture earthquakes. Although of great importance in the reduction of
earthquake hazards, these topics more properly belong in a review
of risk and seismicity (to have been included in this volume).

Data Acquisition and Processing

Instrumeniaiion and arrays

Of the more than 2700 strong motion accelerographs distributed
throughout the United States, most are in buildings and dams in
California (Iwan, 1981). About 830 instruments are deployed for the
purpose of measuring ground motions that are as free as possible
from structural effects (Rojahn and Borcherdt, 1982). About 40%
of these are part of the strong-motion instrumentation program of
the California Division of Mines and Geology (Wootton, 1980). The
most important data to be gathered from these instruments during
the reporting period were from the 1979 Coyote Lake, 1979 Imperial
Valley, and 1980 Livermore Valley earthquakes, all in California
(Porcella et al., 1979; Brady et al., 1980; and McJunkin and Ragsdale,
1980a, 1980b). A good source of data availability is the series of
Seismic Engineering Program reports published as U. S. Geological
Survey Circulars—e. g., Porcella (1982). Compilations of many data
are given by Crouse et al. (1980) and Lee et al. (1980). Information
about accelerograph stations within the western hemisphere is con-
tained in Switzer et al. (1981).

Although accelerograms are a rich source of seismological data,
full use of the records was hampered by the lack of absolute time
and the few number of recordings from any one earthquake. During
the last decade, these concerns have been ameliorated to a large
extent. Radio time or crystal clocks are being incorporated into
the instruments, and increasing attention is being paid to installa-
tion (McJunkin, 1979), array or network design from a seismologi-
cal perspective, and digital recording. Although a number of these
matters were considered before 1979 (e.g., Dielman et al., 1975), some
important developments have taken place since then. A network of
94 accelerographs has been installed in and around the Los Angeles
Basin. This network—a cooperative venture of the University of
Southern California (funded by the National Science Foundation)
and the California Division of Mines and Geology—will augment
existing stations for source studies and provide information about
wave propagation in laterally heterogeneous materials (Anderson et
al., 1981). On a different scale, recordings have been obtained from
small, special purpose arrays. A linear, 300-m long array composed
of 8 digital accelerographs near El Centro, California (Bycroft, 1980)
produced valuable records of the 1979 Imperial Valley earthquake
that are being used to infer the rupture history of the fault (Niazi,
1982a; Spudich and Cranswick, 1982), and an array of 37 digital
instruments, installed within a circle of 2 km radius in northern
Taiwan, has recorded earthquakes up to magnitude 6.9. Frequency-
wavenumber array processing of the data from the Taiwan array in-
dicated that the strong ground motion in the 0.5 to 2 Hz frequency
band contained coherent energy propagating at velocities consistent
with P, 8, and Rayleigh waves (Bolt, Loh, Penzien, Tsai, and Yeh,
1982).

The need for recordings close to large earthquakes can best be
met by installing instruments throughout the world. In recognition of
this, an international workshop on the deployment of strong-motion
arrays was held in Hawaii in 1978 (Iwan, 1979) and special arrays
or networks in addition to networks already in existence are now
in operation or construction in most seismically active countries,
including Haly, China, Japan, Mexico, Turkey, Yugoslavia, India,
and Canada.

Record Processing

The 1971 San Fernando, California, earthquake produced a flood
of analog records that took several years to hand-digitize and process.

This experience and the certainty that with the increasing number of
instruments the problem will be worse in future earthquakes has led
to the development of automatic digitizing procedures. Two types of
digitizers are available, both using film records: a laser-based digitizer
that follows a given trace (Brady et al, 1982; Porter, 1982), and
a fast-scan drum photodensitometer that uses computer processing
to reconstruct a given trace (Lee and Trifunac, 1979; Trifunac and
Lee, 1979). Processing of the digital records involves removal of high
frequency noise, corrections for instrument response and unknown
baselines, integration to produce ground velocity and displacement,
and computation of Fourier and response spectra (the latter being
a plot of the maximum response of an imaginary single-degree-of-
freedom oscillator of fixed damping as a function of the free period
of the oscillator; to the extent that a building can be approximated
as a simple oscillator, this plot gives a direct estimate of the forces
in a building produced by ground shaking with the given accelera-
tion time series.). Although the basic processing techniques were es-
tablished before 1979, improvements continue to be made. Current
research is centered on assessing errors from digitization (Shoja~
Taheri, 1980a), and on applying modern signal-processing techniques
(Ehrenberg and Hernandes, 1981; Raugh, 1981; Khemici and Shah,
1982; Shyam Sunder and Connor, 1982).

Empirical Studies of Strong Ground Motion

Characteristics

Various ways of characterizing strong ground motion are used
for engineering applications and for purposes of comparing with
theoretical simulations. For example, Perez (1980, 1982) has charac-
terized the response spectra by the number of cycles sustained above
given amplitude levels, and Haldar and Tang (1981) have derived a
way of relating an acceleration time history to an equivalent num-
ber of uniform cycles. The relations between the three components of
recorded motion at a station have been studied by Kubo and Penzien
(1979a) and Huang (1982), who constructed a tensor of covariances,
and then at every time increment found three orthogonal axes, (the
principal axes), such that the covariance between the components was
zero. Analysis of the 1971 San Fernando earthquake accelerograms by
Kubo and Penzien (1979a) showed a correlation between the major
axis and the direction to the fault, indicating more order in the
polarization of the accelerograms than might be supposed at first
glance. Along the same lines, O’'Rourke et al. (1982) derived angles
of incidence from the polarization of the S-waves and then used this,
in combination with a knowledge of local shear velocity, to derive the
apparent propagation velocity of S waves at the station. Considering
the number of potential problems with this technique, they found
very reasonable numbers—2.1 km/s and 3.7 km/s for the 1971 San
Fernando and 1979 Imperial Valley earthquakes, respectively. These
velocities are consistent with body wave propagation and indicate
that even close to earthquakes with faulting near the surface, little
of the high-frequency motion is due to fundamental-mode surface
waves. For the engineer the measured velocities are important, for
they imply that at frequencies of engineering interest, the horizontal
wavelengths of the ground motion will greatly exceed the dimensions
of most structures. A theoretical study by Luco and Sotiropoulis
(1980) arrived at the same conclusion.

Also of interest to seismologists attempting to synthesize strong-
motion records are the various studies describing the random-looking
acceleration time series in terms of probability distributions. Hanks
and McGuire (1981) showed that taken as a whole, the motion has a
Gaussian distribution. Mortgat (1979), and following him, Zsutty and
DeHerrera (1979) and DeHerrera and Zsutty (1982), found that the
peaks could be described by either gamma or exponential probability
distribution functions. Given the essentially random ground accelera-
tioms, it is perhaps surprising that a strong correlation exists between
the peak ground acceleration (that is, the largest extremum in a time
series) and the integral-square measure of the motion given by the
root-mean-square (McGuire and Hanks, 1980; Hanks and McGuire,
1981). In fact, using the root-mean-square in regression against dis-
tance for data from the 1971 San Fernando earthquake leads to no
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significant reduction of scatter relative to regressions using the peak
accelerations as the dependent variable (Bond et ol., 1980; McCann,
1980; McCann and Boore, 1982). This could be explained if the scat-
ter in the regressions on distance were due to random, site dependent
multiplicative factors.

Attenuation relations

The earthquake loads for which a structure is to be designed
are usually specified by one or two measures of the ground motion,
the most common being the peak ground acceleration (pga). The
estimation of pga almost always is based on attenuation equations
derived from regressions of observed motions against earthquake
size and distance from source to site. Because of their importance,
these regression equations have received much attention and are up-
dated when new data become available. Boore and Joyner (1982)
reviewed the techniques used and some of the recent results, while
Shakal and Bernreuter (1981) and Toro {1981) discussed some of the
biases that might arise if the dependent and independent parameters
are not selected with care. In the reporting period of 1979-82, the
1979 Imperial Valley earthquake was an important milestone, for
it greatly enhanced the data set for large earthquakes at close dis-
tances (i.e., less than 15 km). Boore et al. (1980) published a statis-
tical analysis of peak acceleration, velocity, and displacement, and
Espinosa (1979) and Boore (1980) derived attenuation curves for
peak velocity based on a strong correlation between peak velocity
and the peak response of a Wood-Anderson seismograph (thus tying
peak velocity to Richter local magnitudes, My; see also Luco, 1982).
Boore and Porcella (1980) showed that data from the 1979 Imperial
Valley earthquake (and a few other recent earthquakes) were well
predicted by the earlier study of Boore et al. (1980) in the 15 km-
100 km distance range. Comprehensive regression analyses including
the new data were reported by Campbell (1981b) and Joymer and
Boore (1981). Although the basic assumptions regarding the regres-
sion model and the constitution of the data set were different, the
results of these two studies differed by less than 35% in a range of
magnitudes from 5.5 to 7.5 and distances from less than 1 km to
50 km (Boore and Joyner, 1982). In spite of this, controversy exists
in the use of the results, especially close to large earthquakes where
there are few data to guide the predictions (Bolt and Abrahamson,
1982; Donovan, 1982a,1982b). The key issue is whether the shape
of the attenuation curves depends on magnitude. Boore and Joyner
(1982) showed that the data cannot distinguish between magnitude-
dependent and magnitude-independent shapes. Another issue some-
times raised is whether the spacing between the curves, for equal
increments of magnitude, decreases at large magnitudes (an effect
known as “saturation”). Campbell’s magnitude-dependent shape im-
plies saturation at close distances, but neither Campbell (1981b) nor
Joyner and Boore (1981) found evidence for saturation at large dis-
tances.

The uncertainties in ground motion predictions can be as large
as a factor of two; they are due to many things: variations in source
properties, propagation path, and local site response. Several studies
have investigated the latter, using ground motion data recorded at
several stations in close proximity. Using data from the differential
array in El Centro, California, Niazi (1982b) and Smith et al. (1982)
found that most variation in the peak ground acceleration was due
to variations in the high-frequency components, as expected. King
and Tucker (1982) found the same thing, and showed that the cross-
covariance in the motions deteriorates most rapidly with station
spacing for arrays sited in regions with large changes in sediment
thickness. McCann and Boore (1982) found variations of a factor
of 1.3 in peak ground accelerations recorded within a small (1 km
radius) area during the 1971 San Fernando earthquake.

Although the design forces are estimated from peak measures
of ground motion, the process is circuitous and involves assumptions
about the shape of the response spectrum. A better technique is the
direct estimation of response spectra by doing new regressions at a
series of incrementally-spaced oscillator frequencies (Cornell et al.,
1979). This has been done by Joyner and Boore (1982a, 1982b) for
the data set used in their 1981 paper.

The duration of the strong shaking of an earthquake is thought
to be an important parameter in structural response and damage and
therefore has received some attention. The main difficulty seems to be
in agreeing on a definition of duration with engineering significance
(McGuire and Barphard, 1979). Recent definitions are based on
cumulative integral-square measures of ground motion (McCann and
Shah, 1979; Westermo and Trifunac, 1979; Vanmarcke and Lai,
1980).

Factors in Strong Ground Motion Prediction

As noted earlier, it is logical to separate the many elements
needed for the prediction of strong motion into the source, the
propagation path, and the site response. These are large categories,
however, and so further subdivision is needed.

Source

In this review, three categories of source studies are con-
sidered. The first includes modeling studies that determine the source
parameters controlling high-frequency motion, such as variations in
stress or strength along the fault and rupture velocity determina-
tions. The second category deals with observational and theoretical
studies of the effects of finite-size faults relative to the point source
approximation commonly used in studies of teleseismic waves. The
last category includes mostly theoretical studies aimed at describ-
ing the space-time dependence of the slip across the fault surface.
(A useful collection of papers on these subjects is U. S. Geological
Survey Open-File Report 82-591: Proceedings of Workshop XVI on
The Dynamic Characteristics of Faulting Inferred From Recordings
of Strong Ground Motion [J. Boatwright, editor and organizer|.)

One of the most important developments in the understanding
of the earthquake source in the last four years, at least as far as
strong motion seismology is concerned, is the documentation of the
complexity of earthquake rupture. This complexity can be due to
geometrical complexities in the fault plane or heterogenities in the
fault strength or tectonic stress. Whatever the cause, an effect is to
produce acceleration or deceleration of the rupture front and this in
turn radiates high frequencies. Fault complexity has been suspected
for some time as the only reasonable explanation of the frequency-
magnitude relation, multiple events, and random-appearing ground
acceleration (Hanks, 1979a; Nur and Israel, 1980). It has been found
in studies of the teleseismic radiation from large earthquakes (Butler
et al., 1979; Stewart and Kanamori, 1982) and in studies of recent
moderate earthquakes near Friuli, Italy (Cipar, 1981) and California
(Hartzell and Brune, 1979; Wallace, Helmberger, and Ebel, 1981;
Ebel and Helmberger, 1982; Hartzell and Helmberger, 1982; Olson
and Apsel, 1982). All of the studies of the California earthquakes
used accelerograph data, sometimes in combination with teleseismic
data. A common finding is that small areas of high stress drop
are embedded in larger, low stress drop areas. The high-frequency
radiation comes from these small areas, although they contribute
only a fraction of the total seismic moment.

Even if the rupture were simple, the spread of rupture at a finite
speed over the fault surface can lead to destructive interference of
the radiated waves and large azimuthal variations in the amplitudes
of the waves. This effect, termed “directivity”, has been recognized in
the long-period radiation from major earthquakes for almost thirty
years (see Benioff, 1955). Theoretical and modeling studies show
directivity to be an important factor in near-fault ground motions;
in general, the predicted amplitudes are much larger in the direction
of fault rupture. This apparent focusing of the radiated energy can
occur in a narrow range of azimuths, and the azimuthal range and
the amplitude of the waves are strong functions of the ratio of the
rupture velocity to the shear wave velocity (Hartzell and Archuleta,
1979; Archuleta and Hartzell, 1981). Until recently, observational
evidence at frequencies of concern to engineers has been lacking. Now
it has been recognized from moderate earthquakes at frequencies
from less than 1 Hz to over 10 Hz (Heaton and Helmberger, 1979;
Bakun and McEvilly, 1981). Singh (1982) and Niazi (1982a) found
directivity in the ground velocities, but not the ground accelerations,
produced by the 1979 Imperial Valley earthquakes. Complicated



Boore: Strong - Motion Seismology 1311

faulting, with corrugations in the fault plane and bilateral rupture
on strong patches may destroy the coherence needed to produce a
strong directivity effect at higher frequences. This need not always
be true, however; Boatwright and Boore (1982) found strong direc-
tivity in the ground accelerations radiated by two earthquakes near
Livermore Valley, California.

Because of its strong theoretical influence on directivity, rup-
ture velocity is an important source property in the prediction of
strong ground motion. Determinations of rupture velocity from a
few stations at teleseismic distances are often nonunique—the ob-
served source process time is made up both of the time taken for
fault slip to occur and the time it takes for the rupture to propagate
along the fault. Analysis of accelerograms distributed around a fault
provide a much better experiment for the determination of rupture
velocity. For example, the directivity observed by Boatwright and
Boore (1982) could only be explained by a rupture velocity greater
than about 0.7 times the shear wave velocity. Similar values for
the rupture velocity have been reported for the 1971 San Fernando
earthquake by Heaton (1982) and, using a variety of techniques, for
the 1979 Imperial Valley earthquake by Archuleta (1982a), Niasi
(1982a), and Spudich and Cranswick (1982). The latter study is par-
ticularly interesting, for it was based on the observed propagation
velocity across the short differential array near the fault (Byeroft,
1980, 1982) and is as close ag we are likely to come for some time to
a direct measurement of the rupture velocity.

Olson and Apsel (1982) also found high rupture velocities for
the Imperial Valley earthquake—in fact, they found velocities near
the compressional wave speed for propagation over a 20 to 30
km section of fault. Almost all earlier studies of rupture velocity
in earthquakes have used an implicit constraint that the rupture
velocity was sub-shear. A number of recent theoretical and numeri-
cal studies, however, showed that super-shear rupture propagation is
possible if the cohesive strength is small. Day (1982b) found that a
fault with strength variations may have locally super-shear rupture
speeds, but that the stress heterogeneities serve to reduce the average
rupture to speeds less than the shear wave velocity. This agrees with
the various modeling studies of the Imperial Valley earthquake.

Of possible importance in the prediction of strong motion is
the demonstration by Lindh and Boore (1981) and Shoja-Taheri
(1980b) that the starting and stopping of the rupture during the 1966
Parkfield, California, earthquake occurred at places corresponding
to changes in trend of the surface trace of the San Andreas fault.
Furthermore, Bakun (1980) and Bakun et al. (1980) have found cor-
relations between seismic activity and surface fault-trace geometry.
These studies suggest that surface mapping of fault traces may be
used to estimate the degree and location of heterogeneities controll-
ing the radiation of high frequencies in future earthquakes.

Before leaving the realm of modeling earthquake seismograms,
I wish to draw attention to Heaton’s recent paper on the 1971
San Fernando earthquake (Heaton, 1982). This is his second at-
tempt at modeling records from this event (the first was Heaton
and Helmberger, 1979). He found that his previous model, based on
accelerograms, did not agree with the teleseismic records, and that
hie new model is different from one based on teleseismic recordings
(Langston, 1978). The lesson is that much nonuniqueness may exist
in the source properties derived from a limited data set; it i8 impor-
tant to use all available data in the inversion process. Teleseismic
records complement near-source accelerograms, for they contain in-
formation radiated at different takeoff angles from the source region
and at different frequencies.

The realization that heterogeneities in fault properties can
significantly influence the high-frequency radiation has led to a num-
ber of theoretical and numerical studies of the characterization of
the heterogeneities and their influence on the fault slip and radiated
energy. These studies range from kinematic or quasidynamic models
(Aki, 1979; Andrews, 1981; Boatwright, 1981; Papageorgiou and Aki,
1982a; Swanger, 1982) to models with spontaneous rupture propaga-
tion (Das and Richards, 1979; Das, 1980, 1981; Day, 1982b). In
agreement with earlier crack studies, Day (1982b) found that abrupt
jumps in rupture velocity occur in regions having sharp changes in
prestress (i.e., the rupture front has no inertia); high frequencies are
radiated by these jumps in rupture velocity (Harris and Achenbach,
1981; Boatwright, 1982a; Madariaga, 1982). Israel and Nur (1979) ar-

gued that heterogeneities in faulting are largely due to nonuniform
fault strength; variable tectonic stress would be smoothed out by
continued faulting.

Predictions of ground motion often requires a knowledge of how
source properties or spectra of radiated energy scale with earthquake
size. Scholz (1982a) demonstrated that fault slip is proportional to
fault length. Two models were proposed to explain this observation,
and their predictions of strong ground motion are very different. In
one, rise time was fixed and therefore stress drop and peak ground ac-
celeration increase with fault length. The model at the other extreme
assumed a constant stress drop and therefore rise times that are
proportional to fault length; in this model the peak ground accelera-
tion increases much more slowly than before, going as the square
root of the logarithm of fault length (Scholz, 1982b).

In a study using recordings of mine tremors as well as strong-
motion records from moderate and large earthquakes, McGarr et al.
(1981) found that peak velocity scales well with earthquake size and
that peak acceleration was not as predictable. The results indicated,
for peak velocity at least, that the same scaling can be used for an
extremely large range of source sizes—radii from about 8 m to 50,000

The size of earthquakes used in attenuation relations is usually
expressed by magnitude. This can lead to confusion, for many mag-
nitude scales exist (Nuttli and Herrmann, 1982) and most reach a
limiting value as the physical size (as measured by the moment)
of the earthquakes increase. For this reason, among others, the at-
tenuation equations of Joyner and Boore (1981) use the moment
magnitude (defined by Hanks and Kanamori, 1979) as one of the in-
dependent variables. A criticism of this is that for large earthquakes
the seismic moment depends on wave periods much greater than
those of engineering interest; implicit in the use of moment mag-
nitude is the assumption that the spectra for most earthquakes
scale with moment in the same way. This is not always the case.
In some earthquakes the derived moment increases with period for
periods considerably beyond the usual corner frequency (Boore et
al., 1981; Buland and Taggart, 1981). Furthermore, according to
Nuttli (1981b, 1982) the scaling relations, as inferred from various
moment-magnitude relations, are different for mid-plate and plate-
margin earthquakes. He found, for example, that two earthquakes
with a body wave magnitude of 7 can differ in moment by a factor
of 100. (Source parameters from recordings within 10 km of small
earthquakes in Arkansas and New Brunswick, however, are incon-
sistent with the parameters from the eastern and central United
States earthquakes plotted in Nuttli [1983]—parameters inferred
from recordings tens to hundreds of km from the sources. A similar
inconsistency has been documented by Mungufa-Orozco [1983], for
earthquakes in Baja California.)

Several studies have concluded that the type of faulting can
influence strong ground motion. Campbell (1981b) reported that
accelerations from reverse faults are systematically about 20% to
30% higher on the average than those from other fault types.
This conclusion was based on oft-times sparsely recorded events
from many geographic regions, and therefore it awaits verification
from future recordings. Campbell’s findings, however, are consistent
with theoretical studies by Anderson and Luco (1982) and McGarr
(1982b). The former found an increase in motions above thrust faults,
and the latter proposed upper bounds on peak acceleration ( 2g for
reverse faulting; 0.4¢g for normal faulting), from considerations of
the state-of-stress in an Earth in which faulting is controlled by the
frictional strength of preexisting cracks; these upper limits can be
exceeded if local site effects amplify the motion, or if faulting occurs
in intact rock.

Propagation path

The studies of propagation path relevant to the prediction of
strong ground motion include measurements of the quality factor
Q and theoretical wave propagation in heterogeneous media. In a
series of papers, Aki has used the direct shear-wave and the coda
(later arriving energy not attributed to simple direct, reflected, or
refracted energy) to measure the attenuation of waves from small
and moderate earthquakes (Aki, 1980a, 1980b, 1981a, 1981b, 1981c,
1982a). At frequencies above about 1 to 3 Hx, he found that attenua-
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tion decreases as frequency to a power between 0 and -1, with a
peak in attenuation near 1 to 3 Hz. Other studies corroborated the
decrease in attenuation with increasing frequency (Mitchell, 1980,
1981; Roecker et al., 1982; Singh et al., 1982). The peak in attenua-
tion is not always seen, however, and Pulli and Aki (1981) suggested
that it only exists in tectonically active areas.

The implications of a frequency-dependent attenuation for
strong ground motion predictions have not been fully explored. The
effort in predicting theoretical wave motions has focused on the
effects of layering instead (Bouchon, 1979a, 1979b, 1981; Geller et
al., 1979; Herrmann, 1979; Wong and Trifunac, 1979b; Archuleta and
Day, 1980; Dravinski, 1980; Harvey, 1981; Herrmann and Goerts,
1981; Kamel and Felsen, 1981; Kausel and Peek, 1982; Niver et
al., 1982). Large velocity contrasts can significantly modify the
amplitudes of the waves (Bouchon, 1979b) and layering introduces
considerable complexity into the waveforms, especially at large dis-
tances relative to the source depth (Wang and Herrmann, 1980).

Site response

It has been known for well over a century that local geology
can significantly affect the ground motions at a site. Recent work
has emphasized the physical understanding of the effects so that
quantitative predictions can be made. Site response, usually in the
form of amplifications of up to an order of magnitude on soft sedi-
ments relative to bedrock motions, have been recognized in waves
ranging from small motions at teleseismic distances (Butler and Ruff,
1980}, to regional phases (Barker et al., 1981), to strong motions near
earthquakes ( Joymer et al., 1981; Chang, 1982; Joyner and Boore,
1982a, 1982b; Trifunac and Westermo, 1982). Anomalously large or
small ground motion amplitudes are often due to local site condi-
tions. For example, Mueller et al. (1982) attributed the peak accelera-
tion of 1.74 g recorded during the 1979 Imperial Valley earthquake
(the largest strong-motion acceleration ever recorded) to resonance
effects due to a thin layer of low velocity sediments—the peak ac-
celerations on nearby stations were 2.5 times less. Campbell (1981b)
reported amplifications of peak horizontal acceleration by a factor
of 2 at sites underlain by shallow soil as compared to rock or deeper
soils.

Empirical studies of the effects of local site geology are often
based on the small motions from microseisms, small earthquakes,
distant blasts. The energy sources for these motions are fairly com-
mon, so specific studies such as detailed mapping of local variations
in site response in an area (Hays et al., 1980) and relating the ground
response to properties of the underlying soils (Rogers et al., 1979) can
be undertaken. A criticism often made of such studies, however, is
that because of nonlinear soil response, they are inapplicable to the
strong motions from large earthquakes. Hays et ol. (1979) and Rogers,
Covington, Borcherdt, and Tinsley (1981) have looked into this by
comparing transfer functions between several stations recording both
the 1979 San Fernando earthquake and the weak motions from un-
derground nuclear explosions in Nevada. The observed transfer func-
tions were reasonably similar, implying that the effects of nonlinear
soil response may not be as important as once was thought. Joyner
et al. (1981), studying accelerograms with amplitudes of about 0.25 ¢
recorded at two adjacent sites—one on s0il and one on rock—reached
the same conclusion.

Site response may do more than amplify or attenuate wave
motions; Frankel (1982) and Hanks (1982b) concluded that it may
be responsible for the commonly-observed sharp depletion of energy
in ground accelerations above a certain maximum frequency. Others
have attributed this to a source effect (Papageorgion and Aki, 1982c),
with the implication that for small enough earthquakes the stress
drop decreases as earthquake magnitude decreases (Archuleta et al.,
1982). Estimates of peak accelerations from various source models
are directly dependent on the maximum frequeney, and therefore
this subject will receive increasing attention in the next few years.

Many of the predictions of site response are based on plane
wave propagation in vertically-heterogeneous media (Burridge et al.,
1980; Kausel and Roesset, 1981), sometimes including nonlinear con-
stitutive behaviour (Wylie and Henke, 1979). Modeling studies by
Langston (1981b) and Johnson and Silva (1981) showed that the

overall response can be adequately predicted by such models. In
their study of accelerograms from the 1979 Coyote Lake, California,
earthquake, Joyner et al. (1981) found that observed amplifications
of 2 to 3 on soil relative to a nearby rock site were well explained
by a plane layer model without invoking nonlinear response. They
concluded that the amplification of the motion was less a matter of
dynamic resonance, as is often assumed, than the simple conservation
of energy flux in a tube of rays as it passes through a heterogeneous
media. This is not to say that dynamic resonance is nonexistent,
only that energy flux may be a good predictor of the amplification
of ground motion measures which represent an average over a range
of frequencies.

The studies just discussed assumed no variation in material
properties in a horizontal direction. This is clearly a poor assump-
tion in many cases; instruments or structures are often sited near the
edges of sedimentary basins or near rapid changes in surface topog-
raphy, such as ridges, artificial cuts, or seacliffs. The influence of
these heterogeneities on the seismic ground motion was the subject
of a number of papers, some using approximate analytical solutions
to idealized problems (Wojcik, 1979; Dravinski, 1982¢; Lee, 1982;
Wong, 1982). Others used finite element or finite difference methods
(Bolt and May, 1979; Drake, 1980; Boore, Harmsen, and Harding
1981; Harmsen and Harding, 1981; May and Bolt, 1982), and one

study used a foam rubber model (King and Brune, 1981). The various
studies assumed different excitations and geometries, and therefore it
is not useful to discuss them in detail. As might be expected, they all
showed that lateral heterogeneities have a significant effect on mo-
tions whose wavelengths are comparable to the characteristic lengths
of the heterogeneities. Boore, Harmsen, and Harding (1981) found
that scattering close to a site is a mechanism whereby a significant
fraction of vertically traveling energy can be converted into horizon-
tally traveling waves. This may be important for the design of long
linear structures such as pipelines and bridges.

Modeling and empirical analysis of data require specific infor-
mation about the geologic structure and seismic velocities near sites.
This has been provided for many strong motion sites in the United
States (Silverstein, 1979, 1980a, 1980b; Shannon and Wilson, 1980a,
1980b, 1980c; Fumal et al.,1982a, 1982b).

Simulation and Estimation of Strong Ground Motion

I have discussed above many of the elements that go into the
prediction of strong ground motion. Studies that combine these ele-
ments in various degrees, with the goal of predicting time series or
peak parameters, are reviewed here (other reviews can be found
in Swanger et al., 1980; Bolt, 1981; Hays, 1980; Swanger et al.,
1981; Aki, 1982b). The various studies can be roughly classed into
those concerned with predicting intermediate to long period motions
(periods greater than about 1 s) and those interested in higher fre-
quencies. The former predictions are often based on computer codes
that propagate waves in layered media; the latter recognize that in
general the lateral heterogeneities near the Earth’s surface make the
use of such codes a dubious undertaking (beside which, the cost and
complexity of using such techniques is a strongly increasing function
of frequency).

A favorite and quite relevent application of the long-period
simulation techniques is to compute the motions expected in the
Los Angeles area from a repeat of the 1857 earthquake on the San
Andreas fault (Kanamori, 1979; Bouchon and Aki, 1980; Butler and
Kanamori, 1980; Apsel et al., 1981). The results generally showed
that the duration of shaking can be on the order of 6 minutes, and
that the maximum amplitudes will be carried by surface waves.

Simulations of high-frequency motion must account for the ran-
dom-appearing nature of accelerograms, and this is usually done
by allowing the source to be complex. The eflects of wave propaga-
tion are sometimes accounted for by a Green’s function technique in
which observed records from smaller events are summed to yield the
ground motion from a larger earthquake (Kanamori, 1979; Hadley
and Helmberger, 1980; Hartzell, 1982). A variation on this theme was
given by Hadley et al. (1982); they used theoretical wave propagation
to obtain the path effect and close-in recordings of a few moderate
earthquakes for the source function.
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The implications of complex faulting for high-frequency ground
motiors has been considered by many authors. McGarr (1981)
proposed a model of inhomogeneous faulting in which failare oc-
curs in a circular high strength asperity surrounded by an annular,
previously failed region. Observations ranging over almost ten or-
ders of magnitude in seismic moment indicated that the ratio of
radii of the outer to the inner regions was between 1 and 10, in-
dependent of earthquake size. Within the context of his model, this
sets upper bounds on near-source ground acceleration and velocity
(McGarr, 1982b). (Lower bounds for peak ground motions have
been proposed by Luco, 1980, 1982). Further complexities in high-
frequency ground motion can be modeled by assuming a distribu-
tion of weak and strong patches. Some studies use specific models of
the heterogeneities. For example, Joyner and Boore (1980) computed
the motions for rupture propagation along a fault on which the dis-
location at any point was derived from filtered white noise. Savy
(1981) used a fault broken into segments of random lengths, with
variable slip and rupture velocity on each segment. The motions com-
puted from these studies account for the finite extent of faults and
are appropriate for site-specific predictions of high-frequency ground
motions close to large faults. In contrast, Boatwright (1982a) and
Papageorgiou and Aki (1982b, 1982¢) used a point source representa-
tion with random superposition of the radiated field from many cir-
cular patches. Their models capture the essence of the high-frequency
motions and are appropriate for predictions of the motions over an
ensemble of sites surrounding the source. The same can be said for
the models of Hanks (1979a), McGuire and Hanks (1980), and Hanks
and McGuire (1981): in yet a third way of characterizing the high
frequency motion, they showed that a simple spectral representation
of the motion (band-limited finite-duration white noise) is justified
and that scaling this spectrum according to Brune’s simple source-
model (Brune, 1970, 1971) gave results in excellent agreement with
strong-motion data. McGuire and Toro (1982) have extended the
model to the site-specific motions from an extended rupture.

Another class of simulations deals with the motions from what
may be called generic models of faulting. Bouchon (19802, 1980b)
has calculated the motion of the ground at many points surrounding
both a dip-slip and a strike-slip finite fault. He included a low-velocity
layer over the substrate media, and found that this introduces much
complexity compared to the motions in a homogeneous halfspace.
Anderson and Luco (1982) found an analytical solution for the mo-
tions from an idealized propagating fault in a halfspace that allowed
them to make extensive parametric studies of the ground motion.

Another type of simulation of use to engineers who need time
series for dynamic analyses of structures is based on suitably filtered
and windowed random noise (Jurkevics and Ulrich, 1979; Kubo and
Penzien, 1979b; Chang et al., 1981; Polhemus and Cakmak, 1981;
Nau et al., 1982). These are replicative simulations in that the time
series are constrained, on the average, to have certain properties
determined from data.

Prediction of Strong Motion in the Central and Eastern U. S.

The design and licensing of the large numbers of nuclear power
plants in the eastern half of the United States requires estimates of
the strong ground motion from possible earthquakes. Unfortunately,
there are few instrumental data available from which to make an
empirical estimate of the motions. Instead, two approaches have
been used. The first relies on estimates of seismic intensities for fu-

ture earthquakes and the correlation of intensity with ground mo-
tions {Chandra, 1979; Nuttli et al., 1979; Trifunac, 1979; Gupta,
1980; Battis, 1981). Large scatter is often associated with these cor-
relations, however, and therefore methods are being developed for
the estimation of ground motions that are less dependent on poorly
determined intermediate correlations. These methods generally com-
bine empirical attenuation relations obtained from the low amplitude
waves produced by whatever energy sources are available (small
earthquakes, explosions) and the scaling of various measures of
ground motion obtained from western United States strong-motion
data (Campbell, 1981a, 1982). It is clear from studies of Lg waves
that attenuation is much less in the eastern United States than in
the west (Bollinger, 1979; Chung and Bernreuter, 1979; Apsel and
Frazier, 1981; Dwyer et al., 1981). The differences in attenuation
should, however, not be important for estimates of motions within
several tens of kilometers of the earthquake source. The problem of
specifying earthquake size does arise. Nuttli (1981b, 1982) reported
that the spectral shapes of midplate and plate margin earthquakes
differ. Consequently, earthquakes in the two regions with the same
long period measure of magnitude could have different amounts of
short period energy. On the other hand, Herrmann and Nuttli (1982)
demonstrated an equivalence between magnitudes determined from
Lg waves (msr,) and from the output of a Wood-Anderson seis-
mometer (Mz). Because mpLgis the usual magnitude determined at
regional distances for eastern earthquakes, and Mis used to clas-
sify most western earthquakes, they suggested that this establishes
a basis for the adoption of the western United States strong motion
data base to the east. Herrmann (1981) warned, however that even
with the equivalence of mpr, and Mz it may be incorrect to simply
replace the attenuation coefficient in regression equations based on
western data with that for the east. The problem is that magnitude,
peak ground acceleration, peak ground velocity, and peak ground
displacement all sample different frequency ranges and, as stated be-
fore, the source scaling may differ in the various parts of the country.
Clearly, this is an important subject for future work.

Conclusions

As I have attempted to make clear in this review, a great amount
of work during the last four years has been put into the prediction of
strong ground motion. Seismologists now have a good understanding
of this motion over a wide range of magnitudes and distances. Much
work remains to be done, however, to reduce the variance in the
predictions of the motion. Judging from past experience, the strong
motion data set will be considerably enlarged in the next four years.
These data will further improve our ability to predict the ground
motion. I hope that these additions to the data set will include
recordings close to very large earthquakes ( M>7.5 ) as well; we have
few such records now, and yet it is these earthquakes which govern
the design of most important structures and present the greatest
earthquake hazard to our population centers.
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Introduction

During the past four years, seismology has
continued its role as ¢the key technique for
determination of the structure of the continental
and oceanic crust. By and large, nowever, the
field and analysis methods used bear little
resemolance to those of ten years ago. A contin-
ued push to increase tne number of recording
channels has led to tne routine use of ocean bot-
tom seismometers, sonobuoys, and multichannel
streamers in oceanic studies, and to the use of
large sets of portable instruments and multichan-
nel seismic reflection strings on land. In stu-
dies using earthquakes as sources, local and
regional arrays provide a capability for obtain-
ing geologically useful two- and three-
dimensional information about the crust. Growth
in computing capacity has proceeded in parallel;
a substantial number of university and government
research groups have hands-on access to supermin-
icomputers with array processors, and handle data
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lioraries containing hundreds of reels of tape.

Theoretical advances now make it possible to gen-

erate synthetic seismograms for all layered

models and for a wide class of nonlayered models,
for aid in interpretation of data. Techniques of
plane wave decomposition and wavefield migration
nave opened up many new possibilities for the
reduction and interpretation of data collected
from arrays without spatial aliasing.

In this review we take up crustal seismology
in terms of the major field metnods:

1) Explosion studies on 1land, for crustal and
upper mantle structure, with networks of port-
able stations, and using refractions and wide
angle reflections,

2) Deep continental reflection studies, using
Vioroseis sources, with dense geophone arrays
normally shorter than 10 km, using narrow
angle reflections,

3) Marine multichannel reflection studies, using
an array of airguns and a towed hydrophone
streamer normally shorter than 3 km.

4) Marine long range studies, similar to (1),
using ocean bottom seismometers (0BS), or
sonobuoys as receivers, with explosions or
airguns as sources.

5) Generalized inversion for crust and 1lithos-



