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Although this is the first review on this topic to appear in a 
quadrennial report, the roots of strong-motion seismology extend 
back to at least 1932, when far-sighted engineers in the Seismological 
Field Survey of the U.S. Coast and Geodetic Survey installed rugged, 
fieldworthy instruments designed to make on-scale recordings of 
large earthquakes (Carder, 1964); these instruments are called ac- 
celerographs, for their output closely mimics ground acceleration 
(Hudspn, 1979}. The original instruments and their offspring have 
provided a wealth of information about ground motions of direct 
use to engineers. Due in large part to the continued devotion of the 
Seismological Field Survey (now part of the Branch of Engineering 
Seisinology and Geology at the U.S. Geological Survey), the num- 
ber of recordings has increased substantially, particularly in the last 
two decades, and multiple recordings of a few California earthquakes 
have provided the data necessary to begin to unravel the complexities 
of the ground motions and to predict these motions on an empirical 
basis. Although seismologis•s used accelerograph records in studies 
of earthquake energy and ground motion attenuation as long ago 
as 1942 (Gutenberg and Richter, 1942, 1956), widespread seismologi- 
cal use of the records began with Aki's (1968) analysis of the 1966 
Parkfield earthquake. The field of Strong-motion seismology has been 
especially vigorous since 1971, when the San Fernando, California, 
earthquake produced close to 100 on-scale records of the ground mo- 
tion within 150 km of the faulting. The rapid growth of the field 
in the last decade was helped by the social concern with earthquake 
hazard reduction and by regulatory processes intended to protect the 
environment and the population from the failure of such engineered 
structures as nuclear power plants and large dams. 

This paper is not subject to U.S. copyright. Published in 1983 
by the American Geophysical Union. 

Paper number 3R0397. 

A major task of strong-motion seismology is the study and 
prediction of potentially damaging ground shaking; practically speak- 
ing, this means predictions of ground motion within several tens 
of kilometers from earthquakes with moments larger than about 
3 x 102s dyne-cm. To do this requires a truly interdisciplinary 
approach, with contributions from both seismologists and engineers 
working on subjects as diverse as theoretical models of crack 
propagation and experimental nonlinear soil behavior. Because so 
many different areas of research pertain to strong-motion seis- 
inology, this review has been difficult to organize and has resulted 
in a voluminous bibliography, of which only a fraction of the 
papers will be specifically cited. The paper begins with a review 
of data acquisition and processing, followed by studies based on 
empirical analyses of strong-motion data. These include inves- 
tigations of the character of strong motion, such as the cor- 
relation between components and the prediction from regression 
studies of strong ground motion as a function of source size and dis- 
tance from source to site. After this will be a number of topics related 
to the prediction of strong ground motion, following the usual order 
of source, propagation path, and site response. Consideration of these 
topics forms the bulk of the review. The final section deals briefly 
with the important and difficult problem of prediction of ground 
motion in the central and eastern United States, where few record- 
ings of motions from damaging earthquakes are available. Because 
the emphasis in this review is on the prediction of strong ground mo- 
tion, references to modeling studies using accelerograms from specific 
earthquakes are not given in a separate section but are disi, ributed 
throughout the text when their conclusions are relevant to the topic 
under consideration. In fact, most of them are coiledted in the sub- 
section of source studies dealing with estimation of source properties. 

Because my charge was to review the field from 1979--1982, I 
have ignored the many contributions made previously ( the bulk of 
which were made between 1971 and 1979). An excellent guide to the 
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earlier literature ( and the current literature as well ) is the Abstract 
Journal o! Earthquake Engineering (R. C. Denton, ed.), published by 
the Earthquake Engineering Center of the University of California 
at Berkeley. 

This review has ignored seismological work related to the es- 
timation of rupture length, magnitude, and recurrence times for fu- 
ture earthquakes. Although of great importance in the reduction of 
earthquake hazards, these topics more properly belong in a review 
of risk and seismicity (to have been included in this volume). 

Data Acquisition and Processing 

Instrumentation and o•rra•s 

Of the more than 2700 strong motion accelerographs distributed 
throughout the United States, most are in buildings and dams in 
California (Iwan, 1981). About $30 instruments are deployed for the 
purpose of measuring ground motions that are as free as possible 
from structural effects (Rojahn and Borcherdt, 1982). About 40% 
of these are part of the strong-motion instrumentation program of 
the California Division of Mines and Geology (Wootton, 1980). The 
most important data to be gathered from these instruments during 
the reporting period were from the 1979 Coyote Lake, 1979 Imperial 
Valley, and 1980 Livermore Valley earthquakes, all in California 
(Potcella et al., 1979; Brady et al., 1980; and McJunkin and Ragsdale, 
1980a, 1980b). A good source of data availability is the series of 
Seismic Engineering Program reports published as U.S. Geological 
Survey Circulars--e. g., Porcella (1982). Compilations of many data 
are given by Crouse et u/. (1980)and Lee et al. (1980). Information 
about accelerograph stations within the western hemisphere is con- 
tained in Switzer et al. (1981). 

Although accelerograms are a rich source of seismological data, 
fuji use of the records was hampered by the lack of absolute time 
and the few number of recordings from any one earthquake. During 
the last decade, these concerns have been ameliorated to a large 
extent. Radio time or crystal clocks are being incorporated into 
the instruments, and increasing attention is being paid to installa- 
tion (McJunkin, 1979), array or network design from a seismologi- 
cal perspective, and digital recording. Although a number of these 
matters were considered before 1979 (e.g., Dielman et al., 1975), some 
important developments have taken place since then. A network of 
94 accelerographs has been installed in and around the Los Angeles 
Basin. This network--a cooperative venture of the University of 
Southern California (funded by the National Science Foundation) 
and the California Division of Mines and Geology--will augment 
existing stations for source studies and provide information about 
wave propagation in laterally heterogeneous materials (Anderson et 
al., 1981). On a different scale, recordings have been obtained from 
small, special purpose arrays. A linear, 300-m long array composed 
of $ digital accelerographs near E1 Centro, California (Bycroft, 1980) 
produced valuable records of the 1979 Imperial Valley earthquake 
that are being used to infer the rupture history of the fault (Niazi, 
1982a; Spudich and Cranswick, 1982), and an array of 37 digital 
instruments, installed within a circle of 2 km radius in northern 
Taiwan, has recorded earthquakes up to magnitude 6.9. Frequency- 
wavenumber array processing of the data from the Taiwan array in- 
dicated that the strong ground motion in the 0.5 to 2 Hz frequency 
band contained coherent energy propagating at velocities consistent 
with P, S, and Rayleigh waves (Bolt, Lob, Penzien, Tsai, and Yeh, 
•82). 

The need for recordings close to large earthquakes can best be 
met by installing instruments throughout the world. In recognition of 
this, an international workshop on the deployment of strong-motion 
arrays was held in Hawaii in 1978 (Iwan, 1979) and special arrays 
or networks in addition to networks already in existence are now 
in operation or construction in most seismically active countries, 
including Italy, China, Japan, Mexico, Turkey, Yugoslavia, India, 
and Canada. 

Record Processing 

The 1971 San Fernando, California, earthquake produced a flood 
of analog records that took several years to hand-digitize and process. 

This experience and the certainty that with the increasing number of 
instruments the problem will be worse in future earthquakes has led 
to the development of automatic digitizing procedures. Two types of 
digitizers are available, both using film records: a laser-based digitizer 
that follows a given trace (Brady et al., 1982; Porter, 1982), and 
a fast-scan drum photodensitometer that uses computer processing 
to reconstruct a given trace (Lee and Trifunac, 1979; Trifunac and 
Lee, 1979). Processing of the digital records involves removal of high 
frequency noise, corrections for instrument response and unknown 
baselines, integration to produce ground velocity and displacement, 
and computation of Fourier and response spectra (the latter•being 
a plot of the maximum response of an imaginary single-degree-of- 
freedom oscillator of fixed damping as a function of the free period 
of the oscillator; to the extent that a building can be approximated 
as a simple oscillator, this plot gives a direct estimate of the forces 
in a building produced by ground shaking with the given accelera- 
tion time series.). Although the basic processing techniques were es- 
tablished before 1979, improvements continue to be made. Current 
research is centered on assessing errors from digitization (Shoja- 
Taheri, 1980a), and on applying modern signal-processing techniques 
(Ehrenberg and Hernandez, 1981; Raugh, 1981; Khemici and Shah, 
1982; Shyam Sunder and Connor, 1982). 

Empirical Studies of Strong Ground Motion 

Characteristics 

Various ways of characterizing strong ground motion are used 
for engineering applications and for purposes of comparing with 
theoretical simulations. For example, Perez (1980, 1982) has charac- 
terized the response spectra by the number of cycles sustained above 
given amplitude levels, and Haldar and Tang (1981) have derived a 
way of relating an acceleration time history to an equivalent num- 
ber of uniform cycles. The relations between the three components of 
recorded motion at a station have been studied by Kubo and Penzien 
(1979a) and Huang (1982), who constructed a tensor of covariances, 
and then at every time increment found three orthogonal axes, (the 
principal axes), such that the covariance between the components was 
zero. Analysis of the 1971 San Fernando earthquake accelerograms by 
Kubo and Penzien (1979a) showed a correlation between the major 
axis and the direction to the fault, indicating more order in the 
polarization of the accelerograms than might be supposed at first 
glance. Along the same lines, O'Rourke et al. (1982) derived angles 
of incidence from the polarization of the S-waves and then used this, 
in combination with a knowledge of local shear velocity, to derive the 
apparent propagation velocity of S waves at the sta%ion. Considering 
the number of potential problems with this technique, they found 
very reasonable numbers--2.1 km/s and 3.7 km/s for the 1971 San 
Fernando and 1979 Imperial Valley earthquakes, respectively. These 
velocities are consistent with body wave propagation and indicate 
that even close to earthquakes with faulting near the surface, little 
of the high-frequency motion is due to fundamental-mode surface 
waves. For the engineer the measured velocities are important, for 
they imply that at frequencies of engineering interest, the horizontal 
wavelengths of the ground motion will greatly exceed the dimensions 
of most structures. A theoretical study by Luco and So%iropoulis 
(1980) arrived at the same conclusion. 

Also of interest %o seismologists attempting to synthesize strong- 
motion records are the various studies describing the random-looking 
acceleration time series in terms of probability distributions. Hanks 
and McGuire (1981) showed that taken as a whole, the motion has a 
Gaussian distribution. Mortgat (1979), and following him, Zsutty and 
DeHerrera (1979) and DeHerrera and Zsutty (1982), found that the 
peaks could be described by either gamma or exponential probability 
distribution functions. Given the essentially random ground accelera- 
tions, it is perhaps surprising that a strong correlation exists between 
the peak ground acceleration (that is, the largest extremum in a time 
series) and the integral-square measure of the motion given by the 
root-mean-square (McGuire and Hanks, 1980; Hanks and McGuire, 
1981). In fact, using the root-mean-square in regression against dis- 
tance for data from the 1971 San Fernando earthquake leads to no 
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significant reduction of scatter relative to regressions using the peak 
accelerations as the dependent variable (Bond et al., 1980; McCann, 
1980; McCann and Boore, 1982). This could be explained if the scat- 
ter in the regressions on distance were due to random, site dependent 
multiplicative factors. 

Attenuation relations 

The duration of the strong shaking of an earthquake is thought 
to be an important parameter in structural response and damage and 
therefore has received some attention. The main difficulty seems to be 
in agreeing on a definition of duration with engineering significance 
(McGuire and Barnhard, 1979). Recent definitions are based on 
cumulative integral-square measures of ground motion (McCann and 
Shah, 1979; Westermo and Trifunac, 1979; Vanmarcke and Lai, 
1980). 

The earthquake loads for which a structure is to be designed 
are usually specified by one or two measures of the ground motion, 
the most common being the peak ground acceleration (pga). The 
estimation of pga almost always is based on attenuation equations 
derived from regressions of observed motions against earthquake 
size and distance from source to site. Because of their importance, 
these regression equations have received much attention and are up- 
dated when new data become available. Boore and Joyher (1982) 
reviewed the techniques used and some of the recent results, while 
Shakal and Bernreuter (1981) and Toro (1981) discussed some of the 
biases that might arise if the dependent and independent parameters 
are not selected with care. In the reporting period of 1979-82, the 
1979 Imperial Valley earthquake was an important milestone, for 
it greatly enhanced the data set for large earthquakes at close dis- 
tances (i.e., less than 15 km). Boore et al. (1980) published a statis- 
tical analysis of peak acceleration, velocity, and displacement, and 
Espinosa (1979) and Boore (1980) derived attenuation curves for 
peak velocity based on a strong correlation between peak velocity 
and the peak response of a Wood-Anderson seismograph (thus tying 
peak velocity to Richter local magnitudes, Mr; see also Luco, 1982). 
Boore and Poreella (1980) showed that data from the 1979 Imperial 
Valley earthquake (and a few other recent earthquakes) were well 
predicted by the earlier study of Boore et al. (1980) in the 15 kin- 
100 km distance range. Comprehensive regression analyses including 
the new data were reported by Campbell (1981b) and Joynet and 
Boore (1981). Although the basic assumptions regarding the regres- 
sion model and the constitution of the data set were different, the 
results of these two studies differed by less than 35% in a range of 
magnitudes from 5.5 to 7.5 and distances from less than I km to 
50 km (Boore and Joynet, 1982). In spite of this, controversy exists 
in the use of the results, especially close to large earthquakes where 
there are few data to guide the predictions (Bolt and Abrahamson, 
1982; Donoran, 1982a,1982b). The key issue is whether the shape 
of the attenuation curves depends on magnitude. Boore and Joynet 
(1982) showed that the data cannot distinguish between magnitude- 
dependent and magnitude-independent shapes. Another issue some- 
times raised is whether the spacing between the curves, for equal 
increments of magnitude, decreases at large magnitudes (an effect 
known as "saturation •). Campbell's magnitude-dependent shape im- 
plies saturation at close distances, but neither Campbell (1981b) nor 
Joyher and Boore (1981) found evidence for saturation at large dis- 
tances. 

The uncertainties in ground motion predictions can be as large 
as a factor of two; they are due to many things: variations in source 
properties, propagation path, and local site response. Several studies 
have investigated the latter, using ground motion data recorded at 
several stations in close proximity. Using data from the differential 
array in E1 Centro, California, Niazi (1982b) and Smith et al. (1982) 
found that most variation in the peak ground acceleration was due 
to variations in the high-frequency components, as expected. King 
and Tucker (1982) found the same thing, and showed that the cross- 
covariance in the motions deteriorates most rapidly with station 
spacing for arrays sited in regions with large changes in sediment 
thickness. McCann and Boore (1982) found variations of a factor 
of 1.3 in peak ground accelerations recorded within a small (1 km 
radius) area during the 1971 San Fernando earthquake. 

Although the design forces are estimated from peak measures 
of ground motion, the process is circuitous and involves assumptions 
about the shape of the response spectrum. A better technique is the 
direct estimation of response spectra by doing new regressions at a 
series of incrementally-spaced oscillator frequencies (Cornell et al., 
1979). This has been done by Joynet and Boore (1982a, 1982b) for 
the data set used in their 1981 paper. 

Factors in Strong Ground Motion Prediction 

As noted earlier, it is logical to separate the many elements 
needed for the prediction of strong motion into the source, the 
propagation path, and the site response. These are large categories, 
however, and so further subdivision is needed. 

In this review, three categories of source studies are con- 
sidered. The first includes modeling studies that determine the source 
parameters controlling high-frequency motion, such as variations in 
stress or strength along the fault and rupture velocity determina- 
tions. The second category deals with observational and theoretical 
studies of the effects of finite-size faults relative to the point source 
approximation commonly used in studies of teleseismic waves. The 
last category includes mostly theoretical studies aimed at describ- 
ing the space-time dependence of the slip across the fault surface. 
(A useful collection of papers on these subjects is U.S. Geological 
Survey Open-File Report 82-591: Proceedings of Workshop XVI on 
The Dynamic Characteristics of Faulting Inferred From Recordings 
of Strong Ground Motion [J. Boatwright, editor and organizer].) 

One of the most important developments in the understanding 
of the earthquake source in the last four years, at least as far as 
strong motion seismology is concerned, is the documentation of the 
complexity of earthquake rupture. This complexity can be due to 
geometrical complexities in the fault plane or heterogenities in the 
fault strength or tectonic stress. Whatever the cause, an effect is to 
produce acceleration or deceleration of the rupture front and this in 
turn radiates high frequencies. Fault complexity has been suspected 
for some time as the only reasonable explanation of the frequency- 
magnitude relation, multiple events, and random-appearing ground 
acceleration (Hanks, 1979a; Nur and Israel, 1980). It has been found 
in studies of the teleseismic radiation from large earthquakes (Butler 
eta!., 1979; Stewart and Kanamori, 1982) and in studies of recent 
moderate earthquakes near Friuli, Italy (Cipar, 1981) and California 
(Hartzell and Brune, 1979; Wallace, Helmberger, and Ebel, 1981; 
Ebel and Helmberger, 1982; Hartzell and Helmberger, 1982; Olson 
and Apsel, 1982). All of the studies of the California earthquakes 
used accelerograph data, sometimes in combination with teleseismic 
data. A common finding is that small areas of high stress drop 
are embedded in larger, low stress drop areas. The high-frequency 
radiation comes from these small areas, although they contribute 
only a fraction of the total seismic moment. 

Even if the rupture were simple, the spread of rupture at a finite 
speed over the fault surface can lead to destructive interference of 
the radiated waves and large azimuthal variations in the amplitudes 
of the waves. This effect, termed "directivity", has been recognized in 
the long-period radiation from major earthquakes for almost thirty 
years (see Benioff, 1955). Theoretical and modeling studies show 
directivity to be an important factor in near-fault ground motions; 
in general, the predicted amplitudes are much larger in the direction 
of fault rupture. This apparent focusing of the radiated energy can 
occur in a narrow range of azimuths, and the azimuthal range and 
the amplitude of the waves are strong functions of the ratio of the 
rupture velocity to the shear wave velocity (Hartzell and Archuleta, 
1979; Archuleta and Hartzell, 1981). Until recently, observational 
evidence at frequencies of concern to engineers has been lacking. Now 
it has been recognized from moderate earthquakes at frequencies 
from less than 1 Hz to over 10 Hz (Heaton and Helmberger, 1979; 
Bakun and McEvilly, 1981). Singh (1982) and Niazi (1982a) found 
directivity in the ground velocities, but not the ground accelerations, 
produced by the 1979 Imperial Valley earthquakes. Complicated 
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faulting, with corrugations in the fault plane and bilateral rupture 
on strong patches may destroy the coherence needed to produce a 
strong directivity effect at higher frequences. This need not always 
be true, however; Boatwright and Boore (1982) found strong direc- 
tivity in the ground accelerations radiated by two earthquakes near 
Livermore Valley, California. 

Because of its strong theoretical influence on directivity, rup- 
ture velocity is an important source property in the prediction of 
strong ground motion. Determinations of rupture velocity from a 
few stations at teleseismic distances are often nonunique--the ob- 
served source process time is made up both of the time taken for 
fault slip to occur and the time it takes for the rupture to propagate 
along the fault. Analysis of accelerograms distributed around a fault 
provide a much better experiment for the determination of rupture 
velocity. For example, the directivity observed by Boatwright and 
Boore (1982) could only be explained by a rupture velocity greater 
than about 0.7 times the shear wave velocity. Similar values for 
the rupture velocity have been reported for the 1971 San Fernando 
earthquake by Heaton (1982) and, using a variety of techniques, for 
the 1979 Imperial Valley earthquake by Archuleta (1982a), Niazi 
(1982a), and Spudich and Cranswick (1982). The latter study is par- 
ticularly interesting, for it was based on the observed propagation 
velocity across the short differential array near the fault (Bycroft, 
1980, 1982) and is as close as we are likely to come for some time to 
a direct measurement of the rupture velocity. 

Olson and Apsel (1982) also found high rupture velocities for 
the Imperial Valley earthquake--in fact, they found velocities near 
the compressional wave speed for propagation over a 20 to 30 
km section of fault. Almost all earlier studies of rupture velocity 
in earthquakes have used an implicit constraint that the rupture 
velocity was sub-shear. A number of recent theoretical and numeri- 
cal studies, however, showed that super-shear rupture propagation is 
possible if the cohesive strength is small. Day (1982b) found that a 
fault with strength variations may have locally super-shear rupture 
speeds, but that the stress heterogeneities serve to reduce the average 
rupture to speeds less than the shear wave velocity. This agrees with 
the various modeling studies of the Imperial Valley earthquake. 

Of possible importance in the prediction of strong motion is 
the demonstration by Lindh and Boore (1981) and Shoja-Taheri 
(1980b) that the starting and stopping of the rupture during the 1966 
Parkfield, California, earthquake occurred at places corresponding 
to changes in trend of the surface trace of the San Andreas fault. 
Furthermore, Bakun (1980) and Bakun et al. (1980) have found cor- 
relations between seismic activity and surface fault-trace geometry. 
These studies suggest that surface mapping of fault traces may be 
used to estimate the degree and location of heterogeneities controll- 
ing the radiation of high frequencies in future earthquakes. 

Before leaving the realm of modeling earthquake seismograms, 
I wish to draw attention to Heatoh's recent paper on the 1971 
San Fernando earthquake (Heaton, 1982). This is his second at- 
tempt at modeling records from this event (the first was Heaton 
and Helmberger, 1979). He found that his previous model, based on 
accelerograms, did not agree with the teleseismic records, and that 
his new model is different from one based on teleseismic recordings 
(Langston, 1978). The lesson is that much nonuniqueness may exist 
in %he source properties derived from a limited data set; it is impor- 
tant to use all available data in the inversion process. Teleseismic 
records complement near-source accelerograms, for they contain in- 
formation radiated at different takeoff angles from the source region 
and at different frequencies. 

The realization that heterogeneities in fault properties can 
significantly influence the high-frequency radiation has led to a num- 
ber of theoretical and numerical studies of the characterization of 

the heterogeneities and their influence on the fault slip and radiated 
energy. These studies range from kinematic or quasidynamic models 
(Aki, 1979; Andrews, 1981; Boatwright, 1981; Papageorgiou and Aki, 
1982a; Swanget, 1982) to models with spontaneous rupture propaga- 
tion (Das and Richards, 1979; Das, 1980, 1981; Day, 1982b). In 
agreement with earlier crack studies, Day (1982b) found that abrupt 
jumps in rupture velocity occur in regions having sharp changes in 
prestress (i.e., the rupture front has no inertia); high frequencies are 
radiated by these jumps in rupture velocity (Harris and Achenbach, 
1981; Boatwright, 1982a; Madariaga, 1982). Israel and Nut (1979) at- 

gued that heterogeneities in faulting are largely due to nonuniform 
fault strength; variable tectonic stress would be smoothed out by 
continued faulting. 

Predictions of ground motion often requires a knowledge of how 
source properties or spectra of radiated energy scale with earthquake 
size. Scholz (1982a) demonstrated that fault slip is proportional to 
fault length. Two models were proposed to explain this observation, 
and their predictions of strong ground motion are very different. In 
one, rise time was fixed and therefore stress drop and peak ground ac- 
celeration increase with fault length. The model at the other extreme 
assumed a constant stress drop and therefore rise times that are 
proportional to fault length; in this model the peak ground accelera- 
tion increases much more slowly than before, going as the square 
root of the logarithm of fault length (Scholz, 1982b). 

In a study using recordings of mine tremors as well as strong- 
motion records from moderate and large earthquakes, McGarr et al. 
(1981) found that peak velocity scales well with earthquake size and 
that peak acceleration was not as predictable. The results indicated, 
for peak velocity at least, that the same scaling can be used for an 
extremely large range of source sizes--radii from about 8 m to 50,000 
m. 

The size of earthquakes used in attenuation relations is usually 
expressed by magnitude. This can lead to confusion, for many mag- 
nitude scales exist (Nuttli and Herrmann, 1982) and most reach a 
limiting value as the physical size (as measured by the moment) 
of the earthquakes increase. For this reason, among others, the at- 
tenuation equations of Joynet and Boore (1981) use the moment 
magnitude (defined by Hanks and Kanamori, 1979) as one of the in- 
dependent variables. A criticism of this is that for large earthquakes 
the seismic moment depends on wave periods much greater than 
those of engineering interest; implicit in the use of moment mag- 
nitude is the assumption that the spectra for most earthquakes 
scale with moment in the same way. This is not always the case. 
In some earthquakes the derived moment increases with period for 
periods considerably beyond the usual corner frequency (Boore •t 
al., 1981; Buland and Taggatt, 1981). Furthermore, according to 
Nuttli (1981b, 1982) the scaling relations, as inferred from various 
moment-magnitude relations, are different for mid-plate and plate- 
margin earthquakes. He found, for example, that two earthquakes 
with a body wave magnitude of 7 can differ in moment by a factor 
of 100. (Source parameters from recordings within 10 km of small 
earthquakes in Arkansas and New Brunswick, however, are incon- 
sistent with the parameters from the eastern and central United 
States earthquakes plotted in Nuttli [1983]--parameters inferred 
from recordings tens to hundreds of km from the sources. A similar 
inconsistency has been documented by Mungufa-Orozco [1983], for 
earthquakes in Baja California.) 

Several studies have concluded that the type of faulting can 
influence strong ground motion. Campbell (1981b) reported that 
accelerations from reverse faults are systematically about 20% to 
30% higher on the average than those from other fault types. 
This conclusion was based on oft-times sparsely recorded events 
from many geographic regions, and therefore it awaits verification 
from future recordings. Campbell's findings, however, are consistent 
with theoretical studies by Anderson and Luco (1982) and McGarr 
(1982b). The fo:mer found an increase in motions above thrust faults, 
and the latter proposed upper bounds on peak acceleration ( 2g for 
reverse faulting; 0.4g for normal faulting), from considerations of 
the state-of-stress in an Earth in which faulting is controlled by the 
frictional strength of preexisting cracks; these upper limits can be 
exceeded if local site effects amplify the motion, or if faulting occurs 
in intact rock. 

Prop agatio n path 

The studies of propagation path relevant to the prediction of 
strong ground motion include measurements of the quality factor 
Q and theoretical wave propagation in heterogeneous media. In a 
series of papers, Aki has used the direct shear-wave and the coda 
(later arriving energy not attributed to simple direct, reflected, or 
refracted energy) to measure the attenuation of waves from small 
and moderate earthquakes (Aki, 1980a, 1980b, 1981a, 1981b, 1981c, 
1982a). At frequencies above about 1 to 3 Hz, he found that attenua- 
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tion decreases as frequency to a power between 0 and -1, with a 
peak in attenuation near I to 3 Hz. Other studies corroborated the 
decrease in attenuation with increasing frequency (Mitchell, 1980, 
1981; Roecker et al., 1982; Singh et al., 1982). The peak in attenua- 
tion is not always seen, however, and Pulli and Aki (1981) suggested 
that it only exists in tectonically active areas. 

The implications of a frequency-dependent attenuation for 
strong ground motion predictions have not been fully explored. The 
effort in predicting theoretical wave motions has focused on the 
effects of layering instead (Bouchon, 1979a, 1979b, 1981; Geller et 
al., 1979; Herrmann, 1979; Wong and Trifunac, 1979b; Archuleta and 
Day, 1980; Dravinski, 1980; Harvey, 1981; Herrmann and Goertz, 
1981; Kamel and Felsen, 1981; Kausel and Peek, 1982; Niver et 
a/., 1982). Large velocity contrasts can significantly modify the 
amplitudes of the waves (Benebon, 1979b) and layering introduces 
considerable complexity into the waveforms, especially at large dis- 
tances relative to the source depth (Wang and Herrmann, 1980). 

Site response 

It has been known for well over a century that local geology 
can significantly affect the ground motions at a site. Recent work 
has emphasized the physical understanding of the effects so that 
quantitative predictions can be made. Site response, usually in the 
form of amplifications of up to an order of magnitude on soft sedi- 
ments relative to bedrock motions, have been recognized in waves 
ranging from small motions at teleseismic distances (Butler and Ruff, 
1980), to regional phases (Barker et al., 1981), to strong motions near 
earthquakes ( Joyher et al., 1981; Chang, 1982; Joyher and Boore, 
1982a, 1982b; Trifunac and Westerme, 1982). Anomalously large or 
small ground motion amplitudes are often due to local site condi- 
tions. For example, Mueller et al. (1982) attributed the peak accelera- 
tion of 1.74 g recorded during the 1979 Imperial Valley earthquake 
(the largest strong-motion acceleration ever recorded) to resonance 
effects due to a thin layer of low velocity sediments--the peak ac- 
celerations on nearby stations were 2.5 times less. Campbell (1981b) 
reported amplifications of peak horizontal acceleration by a factor 
of 2 at sites underlain by shallow soil as compared to rock or deeper 
soils. 

Empirical studies of the effects of local site geology are often 
based on the small motions from microseisms, small earthquakes, 
distant blasts. The energy sources for these motions are fairIy com- 
mon, so specific studies such as detailed mapping of local variations 
in site response in an area (Hays et al., 1980) and relating the ground 
response to properties of the underlying soils (Rogers et al., 1979) can 
be undertaken. A criticism often made of such studies, however, is 
that because of nonlinear soil response, they are inapplicable to the 
strong motions from large earthquakes. Hays et al. (1979) and Rogers, 
Covington, Borcherdt, and Tinsley (1981) have looked into this by 
comparing transfer functions between several stations recording both 
the 1979 San Fernando earthquake and the weak motions from un- 
derground nuclear explosions in Nevada. The observed transfer func- 
tions were reasonably similar, implying that the effects of nonlinear 
soil response may not be as important as once was thought. Joynet 
et al. (1981), studying accelerograms with amplitudes of about 0.25 g 
recorded at two adjacent sites--one on soil and one on rock--reached 
the same conclusion. 

Site response may do more than amplify or attenuate wave 
motions; Frankel (1982) and Hanks (1982b) concluded that it may 
be responsible for the commonly-observed sharp depletion of energy 
in ground accelerations above a certain maximum frequency. Others 
have attributed this to a source effect (Papageorgiou and Aki, 1982c), 
with the implication that for small enough earthquakes the stress 
drop decreases as earthquake magnitude decreases (Archuleta et al., 
1982). Estimates of peak accelerations from various source models 
are directly dependent on the maximum frequency, and therefore 
this subject will receive increasing attention in the next few years. 

Many of the predictions of site response are based on plane 
wave propagation in vertically-heterogeneous media (Burridge et al., 
1980; Kausel and Roesset, 1981), sometimes including nonlinear con- 
stitutive behaviour (Wylie and Henke, 1979). Modeling studies by 
Langston (1981b) and Johnson and Silva (1981)showed that the 

overall response can be adequately predicted by such models. In 
their study of accelerograms from the 1979 Coyote Lake, California, 
earthquake, Joynet et al. (1981) found that observed amplifications 
of 2 to 3 on soil relative to a nearby rock site were well explained 
by a plane layer model without invoking nonlinear response. They 
concluded that the amplification of the motion was less a matter of 
dynamic resonance, as is often assumed, than the simple conservation 
of energy flux in a tube of rays as it passes through a heterogeneous 
media. This is not to say that dynamic resonance is nonexistent, 
only that energy flux may be a good predictor of the amplification 
of ground motion measures which represent an average over a range 
of frequencies. 

The studies just discussed assumed no variation in material 
properties in a horizontal direction. This is clearly a poor assump- 
tion in many cases; instruments or structures are often sited near the 
edges of sedimentary basins or near rapid changes in surface topog- 
raphy, such as ridges, artificial cuts, or seacliffs. The influence of 
these heterogeneities on the seismic ground motion was the subject 
of a number of papers, some using approximate analytical solutions 
to idealized problems (Wojcik, 1979; Dravinski, 1982c; Lee, 1982; 
Wong, 1982). Others used finite element or finite difference methods 
(Bolt and May, 1979; Drake, 1980; Boore, Harmsen, and Harding 
1981; Harmsen and Harding, 1981; May and Bolt, 1982), and one 
study used a foam rubber model (King and Brune, 1981). The various 
studies assumed different excitations and geometries, and therefore it 
is not useful to discuss them in detail. As might be expected, they all 
showed that lateral heterogeneities have a significant effect on mo- 
tions whose wavelengths are comparable to the characteristic lengths 
of the heterogeneities. Boore, Harmsen, and Harding (1981) found 
that scattering close to a site is a mechanism whereby a significant 
fraction of vertically traveling energy can be converted into horizon- 
tally traveling waves. This may be important for the design of long 
linear structures such as pipelines and bridges. 

Modeling and empirical analysis of data require specific infor- 
mation about the geologic structure and seismic velocities near sites. 
This has been provided for many strong motion sites in the United 
States (Silverstein, 1979, 1980a, 1980b; Shannon and Wilson, 1980a, 
1980b, 1980c; Fumal et a/.,1982a, 1982b). 

Simulation and Estimation of Strong Ground Motion 

I have discussed above many of the elements that go into the 
prediction of strong ground motion. Studies that combine these ele- 
ments in various degrees, with the goal of predicting time series or 
peak parameters, are reviewed here (other reviews can be found 
in Swanger et al., 1980; Bolt, 1981; Hays, 1980; Swanger et al., 
1981; Aki, 1982b). The various studies can be roughly classed into 
those concerned with predicting intermediate to long period motions 
(periods greater than about I s) and those interested in higher fre- 
quencies. The former predictions are often based on computer codes 
that propagate waves in layered media; the latter recognize that in 
general the lateral heterogeneities near the Earth's surface make the 
use of such codes a dubious undertaking (beside which, the cost and 
complexity of using such techniques is a strongly increasing function 
of frequency). 

A favorite and quite relevent application of the long-period 
simulation techniques is to compute the motions expected in the 
Los Angeles area from a repeat of the 1857 earthquake on the San 
Andreas fault (Kanamori, 1979; Bouchon and Aki, 1980; Butler and 
Kanamori, 1980; Apsel et al., 1981). The results generally showed 
that the duration of shaking can be on the order of 6 minutes, and 
that the maximum amplitudes will be carried by surface waves. 

Simulations of high-frequency motion must account for the ran- 
dom-appearing nature of accelerograms, and this is usually done 
by allowing the source to be complex. The effects of wave propaga- 
tion are sometimes accounted for by a Green's function technique in 
which observed records from smaIler events are summed to yield the 
ground motion from a larger earthquake (Kanamori, 1979; Hadley 
and Helmberger, 1980; Hartzell, 1982). A variation on this theme was 
given by Hadley et al. (1982); they used theoretical wave propagation 
to obtain the path effect and close-in recordings of a few moderate 
earthquakes for the source function. 
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The implications of complex faulting for high-frequency ground 
motions has been considered by many authors. McGarr (1981) 
proposed a model of inhomogeneous faulting in which failure oc- 
curs in a circular high strength asperity surrounded by an annular, 
previously failed region. Observagions ranging over almost ten or- 
ders of magnitude in seismic moment indicated %hat the ratio of 
radii of the outer to the inner regions was between I and 10, in- 
dependent of earthquake size. Within the context of his modeI, this 
sets upper bounds on near-source ground acceleration and velocity 
(McGarr, 1982b). (Lower bounds for peak ground motions have 
been proposed by Luco, 1980, 1982). Further complexities in high- 
frequency ground motion can be modeled by assuming a distribu- 
tion of weak and strong patches. Some studies use specific models of 
the heterogeneities. For example, Joyher and Boore (1980) computed 
the motions for rupture propagation along a fault on which the dis- 
location at any point was derived from filtered white noise. Savy 
(1981) used a fault broken into segments of random lengths, with 
variable slip and rupture velocity on each segment. The motions com- 
puted from these studies account for the finite extent of faults and 
are appropriate for site-Specific predictions of high-frequency ground 
mbtions close to large faults. In contrast, Boatwright (1982a) and 
Papageorgiou and Aki (1982b, 1982c) used a point source representa- 
tion with random superposition of the radiated field from many cir- 
cular p•tches. Their models capture the essence of the high-frequency 
motions and are appropriate for predictions of the motions over an 
ensemble of sites surrounding the source. The same can be said for 
the models of Hanks (1979a), McGuire and Hanks (1980), and Hanks 
and McGuire (1981)' in yet a third way of characterizing the high 
frequency motion, they showed that a simple spectral representation 
of the motion (band-limited finite-duration white noise) is justified 
and that scaling this spectrum according to Brune's simple source- 
model (Brune, 1970, 1971) gave results in excellent agreement with 
strong-motion data. McGuire and Toro (1982) have extended the 
model to the site-specific motions from an extended rupture. 

Another class of simulations deals with the mo%ions from what 

may be called generic models of faulting. Bouchon (1980a, 1980b) 
has calculated the motion of the ground at many points surrounding 
both a dip-slip and a strike-slip finite fault. He included a low-velocity 
layer over the substrate media, and found that this introduces much 
complexity compared to the motions in a homogeneous halfspace. 
Anderson and Luco (1982) found an analytical solution for the mo- 
tions from an idealized propagating fault in a half space that allowed 
them to make extensive parametric studies of the ground motion. 

Another type of simulation of use to engineers who need time 
series for dynamic analyses of structures is based on suitably filtered 
and windowed random noise (Jurkevics and Ulrich, 1979; Kubo and 
Penzien, 1979b; Chang et al., 1981; Polhemus and Cakmak, 1981; 
Nan et al., 1982). These are replicatire simulations in that the time 
series are constrained, on the average, to have certain properties 
determined from data. 

Prediction of Strong Motion in the Central and Eastern U.S. 

The desigr. and licensing of the large numbers of nuclear power 
plants in the eastern half of the United States requires estimates of 
ttm strong ground motion from possible earthquakes. Unfortunately, 
there are few instrumental data available from which to make an 

empirical estimate of the motions. Instead, two approaches have 
been used. The first relies on estimates of seismic intensities for fu- 

tare earthquakes and the correlation of intensity with ground mo- 
tions (Chandra, 1979; Nuttli et al., 1979; Trifunac, 1979; Gupta, 
1980; Battis, 1981). Large scatter is often associated with these cor- 
relations, however, and therefore methods are being developed for 
the estimation of ground motions that are less dependent on poorly 
determined intermediate correlations. These methods generally com- 
bine empirical attenuation relations obtained from the low amplitude 
waves produced by whatever energy sources are available (small 
earthquakes, explosions) and the scaling of various measures of 
ground motion obtained from western United States strong-motion 
data (Campbell, 1981a, 1982). It is clear from studies of Lg waves 
that attenuation is much less in the eastern United States than in 

the west (Bollinger, 1979; Chang and Bernreuter, 1979; Apeel and 
Frazier, 1981; Dwyer et al., 1981). The differences in attenuation 
should, however, not be important for estimates of motions within 
severaI tens of kilometers of the earthquake source. The problem of 
specifying earthquake size does arise. Nuttli (1981b, 1982) reported 
that the spectral shapes of midplate and plate margin earthquakes 
differ. Consequently, earthquakes in the two regions with the same 
long period measure of magnitude could have different amounts of 
short period energy. On the other hand, Herrmann and Nuttli (1982) 
demonstrated an equivalence between magnitudes determined from 
Lg waves (mbLg) and from the output of a Wood-Anderson seis- 
mometer (ML). Because m•œgis the usual magnitude determined at 
regional distances for eastern earthquakes, and MLis used to clas- 
sify most western earthquakes, they suggested that this establishes 
a basis for the adoption of the western United States strong motion 
data base to the east. Herrmann (1981) warned, however that even 
with the equivalence of mbœ• and Mr it may be incorrect to simply 
replace the attenuation coefficient in regression equations based on 
western data with that for the east. The problem is that magnitude, 
peak ground acceleration, peak ground velocity, and peak ground 
displacement all sample different frequency ranges and, as stated be- 
fore, the source scaling may differ in the various parts of the country. 
Clearly, this is an important subject for future work. 

Conclusions 

As I have attempted to make clear in this review, a great amount 
of work during the last four years has been put into the prediction of 
strong ground motion. Seismologists now have a good understanding 
of this motion over a wide range of magnitudes and distances. Much 
work remains to be done, however, to reduce the variance in the 
predictions of the motion. Judging from past experience, the strong 
motion data set will be considerably enlarged in the next four years. 
These data will further improve our ability to predict the ground 
motion. I hope that these additions to the data set will include 
recordings close to very large earthquakes ( M > 7.5 ) as well; we have 
few such records now, and yet it is these earthquakes which govern 
the design of most important structures and present the greatest 
earthquake hazard to our population centers. 
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An introductory remark. Because of the wide range of fields 
covered in thi• review, my initial version of this paper grouped the 
references according to subject matter. I found this to be awkward, 
for a particular p•er could logically fit into several categories, and 
finding a paper cited in the text often required searching through 
several groups of references. Thus I have fallen back to the standard 
alphabetical listing, even though the papers not cited in the text are 
more likely to escape attention. 
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SEISMIC STUDIES OF CRUSTAL STRUCTURE 
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Insroduction 

DL?•ing the past four years, seismoiogy nas 
continued its role as the key technique for 
determination of the structure of the continental 

and oceanic crust. By and large, nowever, the 
field and analysis methods used Oear little 
resemoiance to tnose of ten years ago. A contin- 
ued push to increase tne n•nOer of recording 
caanneis has led to tne routine use of ocean oot- 

tan seismometers, sonoouoys, and multichannel 
strewhers in oceanic studies, and to the use of 
large sets of portaole instruments and multichan- 
nel seismic reflection strings on land. In stu- 
dies using earshqua•es as sources, local and 
regional arrays provide a capaOility for oO%ain- 
ing geologically useful two- and taree- 
dimensional information aOout the cruss. Growth 
in computing capacity has proceeded in parallel; 
a suostantial numoer of university and governmen5 
research groups nave hands-on access to supermin- 
icomputers with array processors, and handle data 
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lioraries containing hundreds of reels of tape. 
Theoretical advances now make it possible to gen- 
erate synthetic seismograms for aii layered 
models and for a wide class of nonlayered models, 
for aid in interpretation of data. Techniques of 
plane wave decomposition and wavefield migration 
nave opened up many new possioilities for the 
reduction and interpretation of data collected 
from arrays wisaout spatial aliasing. 

In tnis review we take up crustal seismoiogy 
in terms of the major field metnods: 
1) Explosion studies on land, for crustal and 

upper mantle structure, with networks of port- 
aOle stations, and using refractions and wide 
angle reflections. 

2) Deep continental reflection studies, using 
Vioroseis sources, with dense geophone arrays 
normally shorter than 10 km, using narrow 
angle reflections. 

3) Marine multichannel reflection studies, using 
an array of airguns and a towed hydrophone 
streamer normally shorter than 3 Km. 

4) Marine long range studies, similar to (1), 
using ocean Oottom seismometers (OBS), or 
sonoOuoys as receivers, with explosions or 
airguns as sources. 
Generalized inversion for crust and iithos- 5) 


