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ABSTRACT 

Adjustment factors that can used to convert ground-motion intensity measures at sites with 
VS30=760 m/sec and VS30=2000 m/sec to a reference rock site, defined as one with VS30=3000 
m/sec, are provided as tables: (1) for moment magnitudes from 2 to 8; (2) rupture distances from 
2 km to 1200 km; (3) response spectra at periods from 0.01 sec to 10.0 sec; and (4) peak 
acceleration and peak velocity. Ten velocity models used in ground-motion studies in central and 
eastern North America with VS30 values very close to 760 m/sec were considered, and adjustment 
factors are provided for two of those models that effectively span the range of models; in 
addition, for the convenience of the user, adjustment factors are provide for an average of a 
representative set of models with VS30=760 m/sec. For models with this velocity, adjustment 
factors are provided for four values of the diminution parameter  , ranging from 0.005 sec to 
0.030 sec. The adjustment factors are based on stochastic-method simulations of ground motion. 
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1 Introduction 

The ground-motion intensity measures (GMIMs) used in the PEER NGA-East project were 
derived from recordings obtained from sites with a large range of VS30 values (the parameter 
used to characterize site amplification). The distribution of VS30 from the 18 November 2014 
version of the NGA-East flatfile [Goulet et al. 2014] is shown in Figure 1.  The figure is given in 
two parts: the left graph shows the distribution for all sites, and the right graph shows the 
distribution for sites somewhat subjectively defined as being in southeastern (SE) Canada and 
northeastern (NE) U.S. (north of New York City, New York, and east of St. Louis, Missouri). 
The latter graph was made because the fundamental interest in this report is to derive adjustment 
factors to modify the observed GMIMs to a reference rock site condition, defined by Hashash et 
al. [2014] as a hard rock site with VS30=3000 m/sec. Hard rock sites are more likely to be found 
in glaciated regions such as SE Canada and NE U.S. than elsewhere. This is confirmed by Figure 
1, in which it is clear that most of the sites in the NGA-East database correspond to stiff soil/soft 
rock conditions, whereas the distribution of VS30 in SE Canada and NE U.S. is quite different, 
with a number of sites corresponding to hard rock (VS30=2000 m/sec). Although most, if not all, 
of the  VS30=2000 m/sec assignments are estimated from factors such as local site geology, 
topographic slopes, or type of terrain, and are not based on measurements, the value of  
VS30=2000 m/sec serves as a proxy for sites that would be classified as being on hard rock. 

It is of interest that no sites in the NGA-East database have VS30 values greater than 2000 
m/sec. Therefore, the reference hard-rock condition is an idealization that does not exist or is rare 
in reality. The observations used by Hashash et al. [2014] to derive the reference-rock condition 
of 3000 m/sec were largely from measurements in boreholes at depths below the surface, where 
the velocities were not influenced by weathering layers and sedimentary overburden; thus they 
do not correspond to actual values of VS30 that would have been obtained from those sites. In 
spite of the absence of sites with VS30=3000 m/sec, the simulations in the NGA-East project are 
for a site condition of VS30=3000 m/sec. The choice of such a high value was motivated by not 
wanting site-specific amplifications to be significantly influenced by the material beneath any 
local sedimentary layers. In other words, input motions could be taken as those on the surface of 
the reference rock and then propagated through a site-specific velocity profile placed on top of 
the reference rock velocity profile. 
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Figure 1 Histograms of VS30 values in the NGA-East flatfile. The left graph includes all 

sites, whereas the right graph is the subset of sites east of St. Louis, Missouri, 
and north of New York City, New York (this is a rough way of choosing sites in 
northeastern U.S. and southeastern Canada). 

In view of the dominance of sites in the NGA-East database with VS30 values less than 
2000 m/sec, it is useful to adjust recorded motions to a reference-rock condition. This is useful 
for comparisons of simulations and observations. The adjustments in this report are developed 
for three types of GMIMs: 5%-damped pseudo-absolute response spectral acceleration (PSA), 
peak ground velocity (PGV), and peak ground acceleration (PGA). The method for adjusting 
observed motions to the reference-rock condition is straightforward. There are three steps to the 
method: 

1. Adjust observed GMIMs to an intermediate reference condition (usually 
VS30=2000 m/sec) using the site function that appears in ground-motion 
prediction equations (GMPEs). The function most commonly used is 

 30ln ln S REFGMIM c V V ; the coefficient c could come from studies such as 

those of Hollenback et al. [2015], regressing data in the NGA-East flatfile, or 
from other studies such as described by Stewart et al. [2012], in which 
amplifications from the PEER NGA-West2 GMPEs are adjusted based on 
residuals of the NGA-East data relative to the NGA-West2 GMPEs, or even from 
the NGA-West2 GMPEs, assuming the stiff soil/soft rock site responses are 
similar in eastern and western North America; 

2. Simulate GMIMs for many magnitudes (M), distances ( RUPR , the closest distance 

to the rupture surface), and oscillator periods (T), one set of simulations using 
crustal amplifications for Fourier spectra obtained from models for which 
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VS30=760 m/sec, and a second set of simulations for crustal amplifications with 
VS30=3000 m/sec; and 

3. Form the ratios of the GMIMs for the two sets of amplifications. These ratios are 
the second set of adjustment factors to be applied to motions, the first set being 
discussed in step 1. The second set of adjustments is given here as tables, rather 
than as equations that are a function of magnitude, distance, and oscillator period. 
As will be discussed, the adjustment ratios are relatively constant for certain 
ranges of M, RUPR , and T. 

In this report, I discuss the crustal amplifications for the two values of  VS30 (760 m/sec 
and 3000 m/sec) and then the ratios of GMIMs needed for step 2 (adjusting the GMIM values 
from sites with VS30=760 m/sec to those with VS30=3000 m/sec). Included in the section on the 
crustal amplifications is a discussion of the velocity profiles used for the amplifications. In 
addition to the ratios of GMIMs for VS30=3000 m/sec divided by GMIMs for VS30=760 m/sec, I 
also show GMIM ratios for VS30=3000 m/sec divided by the GMIM for VS30=2000 m/sec, 
because many of stations in the NGA-East flatfile have been assigned VS30=2000 m/sec (as an 
aside, I would think that this argues for the reference velocity for NGA-East being 2000 m/sec, 
not 3000 m/sec). 
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2 CRUSTAL AMPLIFICATIONS FOR SITES 
WITH VS30 = 760 m/sec 

2.1 VELOCITY PROFILES FOR SITES WITH VS30 = 760 M/SEC 

I was provided with six profiles for which VS30=760 m/sec. From here on, I sometimes refer to 
these sites as BC sites, named after the boundary between the National Earthquake Hazards 
Reduction Program [NEHRP] sites classes B and C (Chapter 3) [BSSC 2004]. Three profiles 
came from Walter Silva (S), and the other three came from Youssef Hashash and Joseph Harmon 
(HH). These models [note: I use “profiles” and “models” interchangeably] were guided by 
databases of velocity profiles. Sites with the same value of VS30 can be underlain by quite 
different velocity profiles; the multiplicity of profiles for each author is intended to include a 
range of those velocity-depth functions. The HH models have velocities of 3 km/sec within 100 
m or so of the surface. 

I was initially skeptical that such high velocities could occur at shallow depths, but a 
number of the models in Beresnev and Atkinson [1997] have velocities close to or greater than 
3000 m/sec within 50 m of the surface. In addition, I used the BC site condition velocity model 
from Frankel et al. [1996] (Fea96). This model, derived by me and in collaboration with Art 
Frankel, replaces a western U.S. model that I used in 1986 with a model having a linear gradient 
in the upper 200 m with a slope such that VS30=760 m/sec. These seven models are not from 
measurements at specific sites but are intended to represent generic sites. In addition to those 
seven models, I used velocity models based on measurements at three sites for which VS30 was 
close to 760 m/sec: HAIL, Harrisburg, IL, VS30=765 m/sec, from Odum et al. [2010]; HATCH, 
Baxley, Georgia, Georgia Power Co., VS30=762 m/sec, from J. C. Chin [Personal 
Communication]; and OTT, Ottawa, Ontario, VS30=755 m/sec, from Beresnev and Atkinson 
[1997]. The velocity profiles for the ten models are shown in Figures 2 and 3; the figures differ 
only in the maximum depth for each figure. 

As is obvious from Figures 2 and 3, even though each model has a VS30 very close to 760 
m/sec, the models differ significantly in detail. The models range from those represented by 
continuous functions of depth (e.g., Fea96) to those with large jumps in velocity at discrete 
interfaces (e.g., S760t), as well as a combination of these two characteristics (e.g., HH1000). 

Because the simulations need velocity profiles extending to depths of at least 8 km, I had 
to merge the shallow profiles with deeper profiles. I did this by plotting the nine models that did 
not extend to 8 km (three Silva, three HH, HAIL, HATCH, and OTT) along with three shear-
wave profiles extending to a depth of 8 km that I had available. These deeper profiles are the one 
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from Fea96, and the Boore and Joyner [1997] (BJ97) generic rock and very hard rock profiles. 
The combined velocity models, which were used in the calculations of crustal amplifications, are 
shown in Figures 4 and 5 for different maximum depths. In those figures, I have not 
distinguished between the original shallow models and the extended models, but the legends 
include the maximum depths of each shallow model. 

 

 

Figure 2 Models with VS30=760 m/sec (Fea96=Frankel et al.; HH=Hashash and Harmon; 
S=Silva—see text for details). Some of the models extend below 32 m. The 
lowest depth of 32 m was chosen so that near-surface details can be seen. 
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Figure 3 Models with VS30=760 m/sec; see caption to Figure 2 for explanation of model 
abbreviations. Some of the models extend below 100 m. The lowest depth of 
100 m was chosen so that details deeper than the 32 m used in the previous 
figure can be seen. 
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Figure 4 Combined profiles; see caption to Figure 2 for explanation of model 

abbreviations. The maximum depth for the plot is 8500 m. The main purpose of 
this figure is to show the three profiles on to which the shallow profiles were 
merged. 
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Figure 5 Combined profiles; see caption to Figure 2 for explanation of model 

abbreviations. The maximum depth of 400 m was chosen to show model 
details between those shown in Figure 4 and Figure 3. 

2.2 AMPLIFICATIONS FOR SITES WITH VS30 = 760 M/SEC 

I computed the square-root impedance (SRI) amplifications for each of the profiles, using the 
method described in Boore [2013]. The amplifications were computed assuming a source density 
and velocity of 2.8 g/cc and 3.7 km/sec, assuming a vertical angle of incidence and no 
attenuation (see Boore and Thompson [2015]). I also computed full resonant amplifications for 
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two Silva models, a gradient model (S760) and a model with a large change in velocity at a 
single interface (S760t); see Figure 3. All amplifications assume linear response. The 
amplifications assume no attenuation, but to show the effect of attenuation, curves have been 
added for two models in which the diminution operator exp( )f  has been applied, with 

=0.02 sec. The results are shown in Figures 6 and 7 (where Figure 7 shows the subset of 
models from Figure 6 that were used in computing BC-to-reference rock adjustment factors 
described later). 

Here are some comments on the amplifications shown in Figure 6: 

1. The SRI amplifications all come together at a frequency corresponding to a 
quarter wavelength for 30 m, since each model has the same or almost the same 
VS30; 

2. The amplifications at lower frequencies are controlled by the deeper parts of the 
profiles, and since there are three deeper profiles, the amplifications for the ten 
shallow models merge into one of three amplification curves; 

3. At higher frequencies the amplifications are controlled by the shallow parts of the 
models, which can have significant variations—but the diminution operator will 
reduce the importance of these high frequencies when computing PSA at short 
periods; and 

4. The full resonant amplifications are in reasonable agreement with both the 
gradient and step models (the underprediction of the resonant peaks for the step 
model is a well-known limitation of the SRI method (see Boore [2013]). 

Although I could compute BC-to-reference rock (VS30=3000 m/sec) adjustment factors 
for each of the BC models, I decided to compute adjustment factors for five models: Fea96, 
OTT, HH1000, HH3000, and a subjectively chosen weighted average of the amplifications, 
labeled as “Average BC Model” in Figures 6 and 7. The average BC model is the geometric 
mean of the amplifications for Fea96, HH1000, HH3000, and OTT; these models were chosen 
subjectively to incorporate both gradient and step models (in particular, that for OTT—till over 
glaciated rock). The crustal amplifications for the Fea96, OTT, and Average BC models are 
given in Table 1. The OTT model corresponds to one that might be encountered in glaciated 
regions, with a layer of glacial till on top of bedrock for which glaciation has removed any 
weathered layer.  Such a site would be quite different than BC sites in other parts of the central 
and eastern North America (CENA). On the other hand, Figure 1 shows that most of the data in 
the NGA-East flatfile have a VS30 distribution that is quite different than those in NE U.S. and SE 
Canada; therefore, BC-to-reference rock adjustment factors for a BC model more representative 
of those sites is probably more useful for the NGA-East project. For this reason most of the 
results discussed in this report used the Fea96 model for the BC crustal amplifications. A 
comparison between the adjustment factors for the Fea96, OTT, HH1000, HH3000, and Average 
BC models is given in a later section. 

On the other hand, Figure 1 shows that most of the data in the NGA-East flatfile have a 
VS30 distribution that is quite different than those in NE U.S. and SE Canada, and therefore BC-
to-reference rock adjustment factors for a BC model more representative of those sites is 
probably more useful for the NGA-East project. For this reason most of the results discussed in 
this report used the Fea96 model for the BC crustal amplifications. A comparison between the 
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adjustment factors for the Fea96, OTT, HH1000, HH3000, and Average BC models is given in a 
later section. 

 

 
Figure 6 Amplifications from the square-root-impedance method [Boore 2013] 

assuming an angle of incidence of 0 degrees; also shown are full-resonant 
amplifications (using the program nrattle) for two of the Silva profiles (one 
gradient-like and one step-like), assuming SH waves with a 30 degree angle of 
incidence. The effect of applying a kappa operator with =0.02 sec is also 
shown for two of the profiles. The Fea96 amplifications used a newer velocity-
density relation than used to obtain the densities in Table A6 of Frankel et al. 
[1996] (Fea96), and therefore the amplifications shown in the figure are slightly 
different than those in Table A5 of Fea96. 
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Figure 7 The subset of crustal amplifications shown in Figure 6 that are used in 

computing the adjustment factors to go from sites with VS30=760 m/sec to 
those with VS30=3000 m/sec. 
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Table 1 Crustal amplifications for three models with VS30 close to 760 m/sec*. 

F :Fea96 A:Fea96 F:Average A:Average F:OTT A:OTT 

0.005 1.000 0.001 1.001 0.010 1.009 

0.010 1.019 0.007 1.004 0.030 1.014 

0.022 1.031 0.020 1.011 0.060 1.031 

0.053 1.054 0.051 1.029 0.111 1.056 

0.120 1.104 0.085 1.051 0.195 1.081 

0.223 1.167 0.121 1.070 0.377 1.123 

0.362 1.234 0.203 1.098 0.635 1.175 

0.541 1.321 0.401 1.155 1.027 1.245 

0.789 1.450 0.586 1.205 1.575 1.328 

1.179 1.667 0.789 1.256 2.294 1.437 

1.657 1.928 1.035 1.316 3.105 1.573 

2.273 2.135 1.395 1.395 3.786 1.731 

3.156 2.314 1.879 1.493 4.617 1.974 

4.772 2.470 2.465 1.597 5.233 2.250 

8.149 2.595 3.062 1.705 6.057 2.430 

15.522 2.677 3.702 1.837 6.937 2.745 

32.987 2.736 4.356 1.998 7.863 3.086 

59.130 2.761 5.266 2.240 8.459 3.436 

76.330 2.761 6.031 2.429 42.663 3.436 

     —      — 6.542 2.581      —      — 

     —      — 6.907 2.704      —      — 

     —      — 7.447 2.852      —      — 

     —      — 8.580 3.000      —      — 

     —      — 11.562 3.134      —      — 

     —      — 15.163 3.226      —      — 

     —      — 19.886 3.296      —      — 

     —      — 26.798 3.354      —      — 

     —      — 36.112 3.397      —      — 

     —      — 50.000 3.432      —      — 

     —      — 100.000 3.432      —      — 

 
*F,A are frequencies and amplifications for each model. The frequencies are model 
dependent; they were chosen to give a good approximation of the amplifications shown in 
Figure 6, but using a smaller number of frequencies. 
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3 CRUSTAL AMPLIFICATIONS FOR SITES 
WITH VS30 = 2000 M/SEC and VS30 = 3000 
M/SEC 

3.1 VELOCITY PROFILES FOR SITES WITH VS30 = 2000 AND VS30 = 3000 M/SEC 

The velocity profiles used for the crustal amplifications are based on the very hard rock profile of 
Boore and Joyner [1997]. For VS30=3000 m/sec, the top 300 m of the Boore and Joyner profile 
was replaced by a layer with a velocity of 3000 m/sec (see Boore and Thompson [2015]). For 
VS30=2000 m/sec, the top 30 m of the profile had a shear-wave velocity of 2000 m/sec; this was 
underlain by material with a linear gradient, joining the standard profile at a depth of 300 m. The 
velocity models are shown in Figure 8. Figure 9(a), from Boore and Thompson [2015], compares 
the VS30=3000 m/sec model used here with a different model having the same VS30. 
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Figure 8 The Boore and Joyner [1997] (BJ97) very hard rock (VHR) velocity profile and 

the modifications to that profile such that VS30=2000 m/sec and VS30=3000 
m/sec. The modified profiles were used to compute the crustal amplifications 
used in the simulations in this report. 
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Figure 9 (a) Velocity models for a modification of the Boore and Joyner [1997] very hard 

rock (VHR) site in eastern North America (ENA); see Boore and Thompson 
[2015] for an explanation of the models. The BJ97 model ended at 8 km, 
without the step shown in the left graph; the step is due to the velocity near 
the source being 3.7 km/sec, rather than 3.6 km/sec; and (b) amplifications for 
the two models, without and with the  attenuation operator for the modified 
BJ97 model. (Modified from Boore and Thompson [2015].) 

3.2 AMPLIFICATIONS FOR SITES WITH VS30=3000 M/SEC 

The amplifications were computed using the same method and assumptions as those for sites 
with VS30=760 m/sec, with the results shown in Figure 9(b). In spite of the detailed differences 
in the two velocity models, the crustal amplifications for the two models are similar, and, more 
importantly, they are small. 

  


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4 COMPARISON OF CRUSTAL 
AMPLIFICATIONS FOR SITES WITH VS30 = 
760 M/SEC, VS30 = 2000 M/SEC, and VS30 = 
3000 M/SEC 

The crustal amplifications for the three site conditions, without and with attenuation, are 
compared in Figure 10. Note that the combined amplification and diminution for sites with 
VS30=760 m/sec is greater than for higher velocity sites except at high frequencies, where the 
decrease due to the diminution operator overwhelms the amplification. This has an impact on the 
BC-to-reference rock adjustment factors (defined as the ground motion intensity measure for a 
reference rock site divided by on for a BC site), which tend to become greater than unity at short 
periods as   increases and M decreases, as will be seen in the next section. 
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Figure 10 Crustal amplifications for the three site conditions used in this report. The thin 

lines show the combined effect of the amplifications and kappa diminution 
operators [ exp( )f ]. 
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5 COMPUTATION OF BC-TO-REFERENCE 
ROCK ADJUSTMENT FACTORS 

The BC-to-reference rock adjustment factor (BC2RRAF) is defined as 

30

30

( 3000 m/sec)
2

( 760 m/sec)
S

S

Y V
BC RRAF

Y V





 (1) 

where Y is a GMIM for the indicated site condition. I defined the ratio with the BC GMIM in the 
denominator so that the adjustment of an observed motion is given by a multiplication of the 
observed motion, adjusted to the BC condition, by BC2RRAF. I computed Y and BC2RRAFs for 
two very different path attenuation models: Atkinson [2004] (A04), with a steep decay of 1/R1.3 
within the first 70 km, an increase going as R0.2

 from 70 to 140 km, followed by a 1/R0.5  decay, 
and the Boatwright and Seekins [2011] (BS11) model, with 1/R1.0 1.01 R  within the first 50 km, 

followed by 1/R0.5  . The Q(f) models differ for A04 and BS11. The Boore and Thompson 
[2015] path durations were used. The point-source stochastic method program 
tmrs_loop_rv_drvr, part of the SMSIM suite of programs [Boore 2005], was used for the 
simulations. Other model parameters are contained in the SMSIM parameter files (these files are 
in the electronic appendix to this report). The Boore and Thompson [2015] finite-fault 
adjustment factor for earthquakes in stable continental regions was used in the computations. 
Also in the electronic appendix are files containing tables of the adjustment factors. Interpolation 
of these tables can be used to obtain the adjustment factors for non-tabulated periods, 
magnitudes, and distances. 

5.1 ADJUSTMENTS OF GMIMS FOR SITES WITH VS30=2000 M/SEC TO THOSE 
WITH VS30=3000 M/SEC  

Before showing the BC2RRAFs, I first discuss the adjustment factors from a site with 
VS30=2000 m/sec  to one with VS30=3000 m/sec. This uses Equation (1), but with Y in the 
denominator computed for a VS30=2000 m/sec  crustal amplification. For both site conditions, 
the Campbell et al. [2014] reference value of 0.006 sec for   was used in the simulations. The 
results are shown in Figure 11, where the adjustment factors are plotted against distance, with 
different GMIMs in each graph. As seen there, the adjustment factors are quite similar for the 
two attenuation models (A04 and BS11). Figure 11 also includes the ratio of the Fourier 
amplitude spectra (FAS) for the two crustal amplification models. Because the models only 
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differ in the amplifications, and thus the FAS ratios are the same as the ratios of the crustal 
amplifications themselves, they are not a function of magnitude or distance. Table 2 compiles 
these FAS ratios; because the possible use of this table, and subsequent ones for BC-to-reference 
rock, is as a simple substitute for the M- and RUPR -dependent adjustment factors based on the 

stochastic method simulations in converting response spectra from on-site condition to another, 
the FAS ratios are tabulated versus period rather than frequency. 

The FAS ratios and the adjustment factors are in good agreement for the larger 
magnitudes and for distances within some distance that depends on the period of the GMIM. The 
differences between the adjustment factors and the FAS ratios is understandable in terms of the 
combined effect of the frequency response of an oscillator (in particular, the fact that an 
oscillator can have a response at a frequency for which the ground motion itself has little or no 
energy), the magnitude- and frequency-dependent source spectral shape, the frequency-
dependent amplification and diminution, and the distance- and magnitude-dependent path 
attenuation. A different way of showing the adjustments factors is given in Figure 12, where the 
adjustment factors are a function of period for a suite of magnitudes and two distances. Only the 
Boatwright and Seekins [2011] (BS11) attenuation model was used for the adjustment factors 
shown in this figure. This again shows the good comparison between the FAS ratios and the 
adjustment factors, particularly for the larger magnitudes (but note that at larger distances, Figure 
11 shows that the short-period adjustment factors diverge significantly from the FAS ratio for the 
larger magnitudes). 
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Figure 11 Ratios of PSA as a function of distance for VS30=3000 m/sec and VS30=2000 
m/sec for the Atkinson [2004] (A04) and Boatwright and Seekins [2011] (BS11) 
attenuation models. Also shown are ratios of Fourier acceleration spectra 
(FAS) (no FAS ratio is shown for PGV). Each graph is for a single measure of 
ground motion (5%-damped PSA at the indicated periods and PGV) and a 
range of moment magnitudes (M). =0.006 sec for all ratios. 
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Table 2 Ratio of Fourier amplitude spectra (FAS). FAS for a site with VS30=3000 m/sec  
divided by the FAS of a site with VS30=2000 m/sec. =0.006 sec for both 
sites. 

T (sec) ratio (3kps/2kps) 

0.010 0.782 

0.020 0.782 

0.025 0.782 

0.030 0.782 

0.040 0.782 

0.050 0.782 

0.075 0.783 

0.100 0.786 

0.150 0.795 

0.200 0.805 

0.250 0.816 

0.300 0.827 

0.400 0.852 

0.500 0.877 

0.750 0.918 

1.000 0.936 

1.500 0.956 

2.000 0.970 

3.000 0.980 

4.000 0.985 

5.000 0.988 

7.500 0.991 

10.000 0.994 
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Figure 12 Ratios of PSA for VS30=3000 m/sec and VS30=2000 m/sec  as a function of 
period, for distances of 10 km and 100 km. The Boatwright and Seekins [2011] 
(BS11) attenuation model and a diminution operator with =0.006 sec was 
used for the both site conditions. Also shown are ratios of Fourier acceleration 
spectra (FAS). 
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5.2 ADJUSTMENTS OF GMIMS FOR SITES WITH VS30=760 M/SEC TO THOSE 
WITH VS30=3000 M/SEC 

There is uncertainty about what value to use for   for the VS30=760 m/sec  model. Frankel et al. 
[1996] assumed 0.01 sec, Silva et al. [1999] and Atkinson and Boore [2006] used 0.02 sec, 
Darragh et al. [2015] found 0.005 sec from inverting data, and Yenier and Atkinson [2015] used 
0.025 sec. As will be seen in the BC2RRAF plots, the conversion factor from a BC condition to a 
very hard rock condition can be quite sensitive to the choice of   for short period motions at 
close distances. For this report, I show ratios for   equal to 0.005, 0.01, 0.02, and 0.03 sec. The 
BC2RRAF plots for these values of  are shown in Figures 13, 14, 15, and 16 as a function of 
distance, for the Fea96 BC model. As in the previous section, the figures show that the 
BC2RRAFs are not sensitive to the attenuation model (A04 and BS11), and that the factors are in 
reasonable agreement with the FAS ratios for larger magnitudes and closer distances, particularly 
for longer period motions. (The FAS ratios for the Fea96 model are given in Table 3.) Direct 
comparisons of the BC2RRAFs, for the BS11 attenuation model, are shown in Figure 17 (to 
avoid clutter, the results for =0.005 sec are not shown in that figure). It is not surprising that 
the short-period adjustment factors are quite sensitive to . The question of what  to use is 
beyond the scope of this report. I have tried to find BC sites in central and eastern U.S. and 
Canada with measured ground motions, with no success. But this was prior to the compilation of 
the NGA-East database, and it could be that such recordings are now available. I suspect that the 
 to be used at a BC site similar to OTT will be smaller than those for BC sites that have a less 
rapid increase velocities at shallow depths than at OTT. 

A comparison of the BC2RRAFs as a function of period is shown in Figures 18, 19, 20, 
and 21, one figure per . Each figure shows the BC2RRAFs for two distances and a suite of 
magnitudes. Unlike the previous figures, each of these figures uses the same y-axis scale for ease 
of inter-comparison. 

Here I summarize a few observations from Figures 13 through 21: 

1. The ratios for very small M are quite different than for those from larger M; 

2. In general, the ratios are similar for the two path attenuation models; 

3. Ignoring 2M , the ratios are somewhat insensitive to M and RUPR , except for 

short periods and larger distances. This is good news, as it suggests that a simple 
period-dependent adjustment factor can be used for a wide range of M and RUPR ; 

and 

4. The ratios for short-period motions are very sensitive to the value of . For 
example, the BC2RRAFs for 6M  for =0.005 sec and 0.03 sec differ by a 
factors of 2.1 and 1.1 for T=0.1 sec and T=1.0 sec, respectively, for distances 
out to several hundred km. 
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Table 3 Ratio of Fourier amplitude spectra (FAS): FAS for a site with VS30=3000 m/sec 
and =0.006 sec divided by the FAS of a site with VS30=760 m/sec for the 
modified Frankel et al. [1996] (Fea) model and four values of . 

T (sec) 
ratio (3kps/Fea; 
=0.005 sec) 

ratio (3kps/Fea; 
=0.01 sec) 

ratio (3kps/Fea; 
=0.02 sec) 

ratio (3kps/Fea; 
=0.03 sec) 

0.010 0.304 1.465 33.893 784.310 

0.020 0.357 0.784 3.771 18.140 

0.025 0.370 0.694 2.438 8.565 

0.030 0.379 0.639 1.822 5.193 

0.040 0.393 0.582 1.276 2.798 

0.050 0.402 0.550 1.030 1.931 

0.075 0.416 0.513 0.780 1.186 

0.100 0.426 0.499 0.683 0.935 

0.150 0.444 0.493 0.608 0.749 

0.200 0.457 0.495 0.579 0.677 

0.250 0.475 0.506 0.573 0.650 

0.300 0.489 0.515 0.572 0.635 

0.400 0.524 0.545 0.589 0.638 

0.500 0.560 0.578 0.615 0.655 

0.750 0.651 0.665 0.693 0.723 

1.000 0.720 0.732 0.755 0.779 

1.500 0.800 0.808 0.825 0.843 

2.000 0.845 0.851 0.865 0.878 

3.000 0.886 0.891 0.901 0.910 

4.000 0.907 0.911 0.918 0.925 

5.000 0.922 0.925 0.930 0.936 

7.500 0.945 0.947 0.951 0.955 

10.000 0.958 0.959 0.962 0.965 
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Figure 13 Ratios of PSA as a function of distance for VS30=3000 m/sec and VS30=760 
m/sec for the Atkinson [2004] (A04) and Boatwright and Seekins [2011] (BS11) 
attenuation models. Also shown are ratios of Fourier acceleration spectra 
(FAS) (no FAS ratio is shown for PGV). Each graph is for a single measure of 
ground motion (5%-damped PSA at the indicated periods and PGV) and a 
range of moment magnitudes (M). =0.006 sec for VS30=3000 m/sec and 
=0.005 sec for VS30=760 m/sec. The modified Frankel et al. [1996] model 
was used for the VS30=760 m/sec crustal amplifications. 
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Figure 14 Ratios of PSA as a function of distance for VS30=3000 m/sec and VS30=760 
m/sec for the Atkinson [2004] (A04) and Boatwright and Seekins [2011] (BS11) 
attenuation models. Also shown are ratios of Fourier acceleration spectra 
(FAS) (no FAS ratio is shown for PGV). Each graph is for a single measure of 
ground motion (5%-damped PSA at the indicated periods and PGV) and a 
range of moment magnitudes (M). =0.006 sec for VS30=3000 m/sec and 
=0.010 sec for VS30=760 m/sec. The modified Frankel et al. [1996] model 
was used for the VS30=760 m/sec crustal amplifications. 
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Figure 15 Ratios of PSA as a function of distance for VS30=3000 m/sec and VS30=760 
m/sec for the Atkinson [2004] (A04) and Boatwright and Seekins [2011] (BS11) 
attenuation models. Also shown are ratios of Fourier acceleration spectra 
(FAS) [no FAS ratio is shown for PGV, and it is off the top of the grph (33.9) for 
T = 0.01 sec]. Each graph is for a single measure of ground motion (5%-
damped PSA at the indicated periods and PGV) and a range of moment 
magnitudes (M). =0.006 sec for VS30=3000 m/sec and =0.020 sec for 
VS30=760 m/sec. The modified Frankel et al. [1996] model was used for the 
VS30=760 m/sec crustal amplifications. 
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Figure 16 Ratios of PSA as a function of distance for VS30=3000 m/sec and VS30=760 
m/sec for the Atkinson [2004] (A04) and Boatwright and Seekins [2011] (BS11) 
attenuation models. Also shown are ratios of Fourier acceleration spectra 
(FAS) [no FAS ratio is shown for PGV, and it is off the top of the grph (784) for 
T = 0.01 sec]. Each graph is for a single measure of ground motion (5%-
damped PSA at the indicated periods and PGV) and a range of moment 
magnitudes (M). =0.006 sec for VS30=3000 m/sec and =0.020 sec for 
VS30=760 m/sec. The modified Frankel et al. [1996] model was used for the 
VS30=760 m/sec crustal amplifications. 
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Figure 17 Ratios of PSA as a function of distance for VS30=3000 m/sec and VS30=760 
m/sec for the Atkinson [2004] (A04) and Boatwright and Seekins [2011] (BS11) 
attenuation model and the three values of   (0.01 sec, 0.02 sec, and 0.03 sec) 
used for the VS30=760 m/sec site condition. The modified Frankel et al. [1996] 
model was used for the VS30=760 m/sec crustal amplifications. Also shown 
are ratios of Fourier acceleration spectra (FAS) [no FAS ratio is shown for 
PGV, and the ratios for =0.02 sec and 0.03 sec are off the top of the graph 
for T = 0.01 sec]. Each graph is for a single measure of ground motion (5%-
damped PSA at the indicated periods and PGV) and a range of moment 
magnitudes (M). =0.006 sec for VS30=3000 m/sec . To make the period-
dependent sensitivity of the ratios clear, all graphs have the same scale for the 
ordinate (sacrificing the ratios for M =2 and T = 0.01 sec, which are off scale). 
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Figure 18 Ratios of PSA for VS30=3000 m/sec and VS30=760 m/sec as a function of 
period for distances of 10 km and 100 km. The Boatwright and Seekins [2011] 
(BS11) attenuation model and a diminution operation with =0.005 sec was 
used for the VS30=760 m/sec site condition. The modified Frankel et al. [1996] 
model was used for the VS30=760 m/sec crustal amplifications. Also shown 
are ratios of Fourier acceleration spectra (FAS). 
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Figure 19 Ratios of PSA for VS30=3000 m/sec and VS30=760 m/sec as a function of 
period for distances of 10 km and 100 km. The Boatwright and Seekins [2011] 
(BS11) attenuation model and a diminution operation with =0.01 sec was 
used for the VS30=760 m/sec site condition. The modified Frankel et al. [1996] 
model was used for the VS30=760 m/sec crustal amplifications. Also shown 
are ratios of Fourier acceleration spectra (FAS). 
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Figure 20 Ratios of PSA for VS30=3000 m/sec and VS30=760 m/sec as a function of 
period for distances of 10 km and 100 km. The Boatwright and Seekins [2011] 
(BS11) attenuation model and a diminution operation with =0.02 sec was 
used for the VS30=760 m/sec site condition. The modified Frankel et al. [1996] 
model was used for the VS30=760 m/sec crustal amplifications. Also shown 
are ratios of Fourier acceleration spectra (FAS). 
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Figure 21 Ratios of PSA for VS30=3000 m/sec and VS30=760 m/sec as a function of 
period for distances of 10 km and 100 km. The Boatwright and Seekins [2011] 
(BS11) attenuation model and a diminution operation with =0.03 sec was 
used for the VS30=760 m/sec site condition. The modified Frankel et al. [1996] 
model was used for the VS30=760 m/sec crustal amplifications. Also shown 
are ratios of Fourier acceleration spectra (FAS). 
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6 VARIABILITY OF THE BC2RRAFs 

The BC2RRAFs for several different BC models are compared in Figures 22 through 25. Each 
figure shows the adjustment factors as a function of period for a fixed distance and a suite of 
magnitudes; no FAS ratios are given in the figures. Figures 22 and 23 compare BC models 
HH1000, HH3000, and OTT. The BC2RRAFs are similar for these three BC models, which is 
expected from the similarity of the crustal amplifications in Figure 7. The adjustment factors are 
not sensitive to the distances used in the figures (10 km and 100 km), although earlier figures 
(e.g., Figure 17) shows a distance dependence of the BC2RRAFs for greater distances and short 
periods. On the other hand, Figure 7 shows that the crustal amplifications for the Fea96, Average 
BC and OTT models are different, and this maps the differences in amplitude and shape of the 
BC2RRAFs shown in Figures 24 and 25. Although not shown in the figures, for completeness I 
provide the FAS ratios for the Average BC and the OTT BC models in Tables 4 and 5. A direct 
comparison of the BC2RRAFs for the Fea96, Average BC and OTT models are given in Figure 
26, which shows the ratio of the BC2RRAFs for the Fea96 and OTT models relative to that of the 
Average BC model. Also included in Figure 26 are the ratios of the FAS ratios for the three 
models. This figure shows that the BC2RRAFs are generally within 20% of one another; it also 
shows that the FAS ratios are a good predictor of the variation in BC2RRAFs except for short 
periods. 
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Figure 22 Ratios of PSA for VS30=3000 m/sec and VS30=760 m/sec as a function of 
period for a distance of 10 km. The Boatwright and Seekins [2011] (BS11) 
attenuation model and a diminution operation with =0.02 sec was used for 
the VS30=760 m/sec site condition. Three models were used for the VS30=760 
m/sec crustal amplifications: Hashash and Harmon models HH1000 and 
HH3000, and the OTT model of Beresnev and Atkinson [1997]. 
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Figure 23 Ratios of PSA for VS30=3000 m/sec and VS30=760 m/sec as a function of 
period for a distance of 100 km. The Boatwright and Seekins [2011] (BS11) 
attenuation model and a diminution operation with =0.02 sec was used for 
the VS30=760 m/sec site condition. Three models were used for the VS30=760 
m/sec crustal amplifications: Hashash and Harmon models HH1000 and 
HH3000, and the OTT model of Beresnev and Atkinson [1997]. 
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Figure 24 Ratios of PSA for VS30=3000 m/sec and VS30=760 m/sec as a function of 
period for a distance of 10 km. The Boatwright and Seekins [2011] (BS11) 
attenuation model and a diminution operation with =0.02 sec was used for 
the VS30=760 m/sec site condition. Three models were used for the VS30=760 
m/sec crustal amplifications: Frankel et al. [1996] (Fea96), the average BC 
model derived in this report (Average BC), and the OTT model of Beresnev and 
Atkinson [1997]. 
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Figure 25 Ratios of PSA for VS30=3000 m/sec and VS30=760 m/sec as a function of 
period for a distance of 100 km. The Boatwright and Seekins [2011] (BS11) 
attenuation model and a diminution operation with =0.02 sec was used for 
the VS30=760 m/sec site condition. Three models were used for the VS30=760 
m/sec crustal amplifications: Frankel et al. [1996] (Fea96), the average BC 
model derived in this report (Average BC), and the OTT model of Beresnev and 
Atkinson [1997]. 
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Figure 26 Ratios of PSA for VS30=3000 m/sec and VS30=760 m/sec as a function of 
period for distances of 10 km and 100 km. The Boatwright and Seekins [2011] 
(BS11) attenuation model and a diminution operation with =0.03 sec was 
used for the VS30=760 m/sec site condition. The modified Frankel et al. [1996] 
model was used for the VS30=760 m/sec crustal amplifications. Also shown 
are ratios of Fourier acceleration spectra (FAS). 
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Table 4 Ratio of Fourier amplitude spectra (FAS): FAS for a site with VS30=3000 m/sec 
and =0.006 sec divided by the FAS of a site with VS30=760 m/sec for the 
Average BC model and four values of . 

T (sec) 
ratio (3kps/Avg; 
=0.005 sec) 

ratio (3kps/Avg; 
=0.01 sec) 

ratio (3kps/Avg; 
=0.02 sec) 

ratio (3kps/Avg; 
=0.03 sec) 

0.010 0.245 1.178 27.268 630.990 

0.020 0.287 0.629 3.024 14.547 

0.025 0.298 0.559 1.962 6.895 

0.030 0.306 0.517 1.473 4.199 

0.040 0.319 0.472 1.035 2.270 

0.050 0.328 0.449 0.841 1.577 

0.075 0.347 0.428 0.651 0.989 

0.100 0.364 0.426 0.583 0.799 

0.150 0.430 0.477 0.588 0.726 

0.200 0.523 0.566 0.662 0.775 

0.250 0.595 0.634 0.719 0.815 

0.300 0.647 0.682 0.757 0.841 

0.400 0.712 0.741 0.801 0.867 

0.500 0.755 0.779 0.830 0.883 

0.750 0.823 0.841 0.877 0.914 

1.000 0.861 0.875 0.903 0.932 

1.500 0.904 0.914 0.933 0.953 

2.000 0.930 0.937 0.952 0.967 

3.000 0.953 0.958 0.968 0.978 

4.000 0.963 0.967 0.975 0.982 

5.000 0.968 0.972 0.978 0.984 

7.500 0.978 0.980 0.985 0.989 

10.000 0.985 0.987 0.990 0.993 
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Table 5 Ratio of Fourier amplitude spectra (FAS): FAS for a site with VS30=3000 m/sec 
and =0.006 sec divided by the FAS of a site with VS30=760 m/sec for the 
OTT model and four values of . 

T (sec) 
ratio (3kps/OTT; 
=0.005 sec) 

ratio (3kps/OTT; 
=0.01 sec) 

ratio (3kps/OTT; 
=0.02 sec) 

ratio (3kps/OTT; 
=0.03 sec) 

0.010 0.245 1.177 27.235 630.235 

0.020 0.286 0.628 3.020 14.530 

0.025 0.295 0.554 1.946 6.836 

0.030 0.302 0.509 1.451 4.135 

0.040 0.310 0.459 1.006 2.206 

0.050 0.315 0.431 0.807 1.513 

0.075 0.321 0.396 0.602 0.915 

0.100 0.325 0.380 0.520 0.712 

0.150 0.426 0.473 0.584 0.720 

0.200 0.529 0.572 0.670 0.784 

0.250 0.635 0.676 0.766 0.869 

0.300 0.701 0.739 0.821 0.911 

0.400 0.777 0.808 0.874 0.945 

0.500 0.821 0.848 0.903 0.961 

0.750 0.881 0.900 0.938 0.978 

1.000 0.908 0.923 0.952 0.982 

1.500 0.938 0.948 0.968 0.989 

2.000 0.957 0.965 0.980 0.996 

3.000 0.972 0.977 0.987 0.998 

4.000 0.979 0.983 0.990 0.998 

5.000 0.982 0.985 0.991 0.997 

7.500 0.989 0.991 0.995 0.999 

10.000 0.993 0.994 0.998 1.001 
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7 Conclusions 

None of the ground motions in the NGA-East database were recorded on sites with a VS30 as high 
as that for the reference-rock site condition (3000 m/sec). Most of the motions come from sites 
with estimated values of VS30 near 500 m/sec. A procedure to adjust these motions to the 
reference-rock condition is given here. The first step is to adjust the observed motions to a 
VS30=760 m/sec  site condition, and then use adjustment factors to convert that motion to a site 
with VS30=3000 m/sec. The conversion to VS30=760 m/sec   is not given here, as it can be based 
on existing ground-motion models. This study focuses on the adjustments from VS30=760 m/sec   
to VS30=3000 m/sec, but I also provide adjustments for sites with VS30=2000 m/sec to those 
with VS30=3000 m/sec, as a number of the recordings in northeastern U.S. and southeastern 
Canada are on sites for which the estimated VS30 is 2000 m/sec. The adjustment factors are based 
on stochastic-method simulations, using crustal amplifications derived in this report. Adjustment 
factors are provided as tables of ratios of simulated ground-motion intensity measures for sites 
with VS30=3000 m/sec and either 760 m/sec or 2000 m/sec. The adjustment factors are for 
magnitudes ranging from 2 to 8, rupture distances from 2 km to 1200 km, and periods from 0.01 
sec to 10 sec, in addition to PGA and PGV. One model was considered for VS30=3000 m/sec, as 
the amplifications are not sensitive to the details of hard-rock velocity profiles. In contrast, 10 
models that have been used in CENA, all with VS30 very close to 760 m/sec, were considered. I 
provide adjustment factors for two of those models that approximately span the range of models, 
as well as an average model (for the convenience of the user). For each of the models with 
VS30=760 m/sec,  adjustment factors are provided for four values of  : 0.005 sec, 0.01 sec, 0.02 
sec, and 0.03 sec. 

The adjustment factors for the three models of the crustal amplifications for sites with 
VS30=760 m/sec are generally within 20% of one another for a given value of the diminution 
parameter  . On the other hand, the adjustment factors for each model are sensitive to   at 
short periods. For a given period, the adjustment factors can be a function of magnitude and 
distance, but except for short-period motions, small magnitudes, and distances greater than about 
200 km, the factors are relatively insensitive to magnitude and distance. In these cases, the ratios 
of the Fourier spectra of the ground motions (which are essentially ratios of the site 
amplifications) are a convenient substitute for the adjustment factors based on the ratios of 
simulated ground-motion intensity measures. These Fourier spectral ratios are given in tables. 
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8 Data and Resources 

The square-root-impedance and full resonant amplifications were computed using the programs 
site_amp and nrattle, respectively; they and various utility programs used in the computations 
are part of the SMSIM suite of programs, available from the online software link at 
www.daveboore.com [last accessed 10 April 2015]. nrattle is a modification by R. Herrmann of 
C. Mueller’s program rattle; nrattle is included in the SMSIM suite of software with their 
permission. The densities used in some of the models were obtained from velocity-density 
relations given in daves_notes_on_relating_density_to_velocity_v1.2.pdf, available from 
www.daveboore.com/daves_notes.html [last accessed 10 April 2015]. The ground-motion 
intensity measures and the Fourier spectra were computed using the SMSIM programs 
tmrs_loop_rv_drvr and fmrs_loop_fas_drvr, respectively. The figures were prepared using 
CoPlot (http://www.cohort.com). 
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Appendix A SMSIM Parameters Files Used in 
the Simulations 

Appendix A contains the Electronic Appendix SMSIM parameters files used in the simulations. 
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Appendix B Tables of PGV, PGA, and PSA 
VS30 = 760 m/sec to VS30 = 3000 
m/sec Adjustment Factors 

Appendix B contains the Electronic Appendix tables of PGV, PGA, and PSA VS30=760 m/sec-
to-VS30=3000 m/sec adjustment factors. Separate files are given for the Atkinson [2004] (A04) 
and Boatwright and Seekins [2011] (BS11) attenuation models, and for each model, separate 
files are given for each BC kappa (0.005, 0.010, 0.020, and 0.030 sec). In addition, adjustment 
factors are given for VS30 = 2000 m/sec to VS30 = 3000 m/sec. 
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